SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2020;30:¢1719.
Published online 21 November 2019 in Wiley Online Library (wileyonlinelibrary.com). https://doi.org/10.1002/stvr.1719

SPECIAL ISSUE PAPER

Facilitating program performance profiling via evolutionary
symbolic execution

Andrea Aquinol, Pietro Braione?, Giovanni Denaro>* ' and Pasquale Salza>*

LUSI Universita della Svizzera italiana, Switzerland
2 University of Milano-Bicocca, Italy
3 University of Zurich, Switzerland

SUMMARY

Performance profiling can benefit from test cases that hit high-cost executions of programs. In this paper,
we investigate the problem of automatically generating test cases that trigger the worst-case execution of
programs and propose a novel technique that solves this problem with an unprecedented combination of
symbolic execution and evolutionary algorithms. Our technique, which we refer to as ‘Evolutionary Sym-
bolic Execution’, embraces the execution cost of the program paths as the fitness function to pursue the worst
execution. It defines an original set of evolutionary operators, based on symbolic execution, which suitably
sample the possible program paths to make the search process effective. Specifically, our technique defines
a memetic algorithm that (i) incrementally evolves by steering symbolic execution to traverse new program
paths that comply with execution conditions combined and refined from the currently collected worse pro-
gram paths and (ii) periodically applies local optimizations to the execution conditions of the worst currently
identified program path to further speed up the identification of the worst path. We report on a set of initial
experiments indicating that our technique succeeds in generating good worst-case test cases for programs
with which existing approaches cannot cope. Also, we show that, as far as the problem of generating worst-
case test cases is concerned, the distinguishing evolutionary operators based on symbolic execution that we
define in this paper are more effective than traditional operators that directly manipulate the program inputs.
© 2019 John Wiley & Sons, Ltd.

Received 25 March 2019; Revised 25 September 2019; Accepted 2 October 2019

KEY WORDS: genetic algorithms; software engineering; symbolic execution; worst-case execution time

1. INTRODUCTION

Performance profiling is a fundamental task in many practical settings of software development,
to identify, debug and fix performance bottlenecks of software programs. A core activity is exe-
cuting the target program with a profiler, a tool that monitors the execution and provides detailed
figures on the extent to which various parts of the implementation at different granularity levels, for
example, components, functions, source and binary instructions, impact the execution costs. Typical
information to be collected include the partitioning of the execution time across different program
functions, or the frequency with which specific steps of an algorithm execute, or the impact on the

*Correspondence to: Giovanni Denaro, Universita degli Studi di Milano-Bicocca Scuola di Scienze.
Pasquale Salza, University of Zurich, Switzerland.

TE-mail: denaro@disco.unimib.it; salza@ifi.uzh.ch

© 2019 John Wiley & Sons, Ltd.

W) Check for updates

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1719&domain=pdf&date_stamp=2019-11-21

2 0of 25 AQUINO ET AL.

use of critical resources, for example, memory consumption or yet hints of security vulnerabilities
with respect to inputs that an adversary can exploit for denial of service attacks. A critical asset
for achieving successful performance profiling are the test cases that developers use to conduct
the profiling.

In this paper, we investigate a novel approach to solve the problem of automatically generating
test cases for performance profiling. In particular, we look into the particular instance of this problem
that consists of automatically generating a test case that triggers the Worst-Case Execution Time
(WCET) of a program, a problem that we call ‘WCET testing’.

Traditional techniques for WCET analysis of hard real-time systems include steps based on sym-
bolic execution to prune infeasible execution paths, but they do not generally address the generation
of WCET test cases [1-7]. These techniques exploit symbolic execution on restricted parts of the
overall system, to tune higher lever static analysis procedures.

More recently, the techniques Worst-case Inputs from Symbolic Execution (WISE) [8] and Sym-
bolic Path Finder Worst-Case Analysis (SPF-WCA) [9] introduced techniques for WCET testing
based on symbolic execution. The core idea of WISE and SPF-WCA is to infer the structure of the
worst program path by accomplishing the ‘exhaustive symbolic execution’ of the target program
for a simplified version of the problem, which they obtain by constraining the program inputs to a
user-defined small bound, thus controlling for the amount of paths that must be analyzed. Then they
extrapolate the information of the worst program path observed under the assumed small bound, to
synthesize a path selection heuristic, which they call a ‘guidance policy’, and use the guidance pol-
icy to steer the symbolic execution of the program in the target (unconstrained) scope. If successful,
the guidance policy allows them to identify the worst-case path by visiting a small subset of the
possible program paths.

The new approach that we present in this paper is motivated by the observation of two crucial
limitations of the approach embraced by the techniques WISE and SPF-WCA. First, the possibility
of synthesizing successful guidance policies depends on the existence some generalizable structural
regularity in the series of worst program paths that correspond to the target program for increasing
inputs. Unfortunately, the existence of such regularity cannot be taken for granted. Second, some
programs simply have by-design radically different behaviours for small and large inputs, respec-
tively. When these issues occur for a program under test, both the techniques WISE and SPF-WCA
result in either an ineffective guidance policy that selects an unmanageable amount of paths or
even a misleading policy that may lead to reporting a wrong WCET test case. In Section 2, we
show example programs that provide compelling evidence of these issues. Moving froward from
these motivating observations, our approach to WCET testing defines an unprecedented combination
of symbolic execution [10-12] and evolutionary algorithms [13, 14], which we call Evolutionary
Symbolic Execution (ESE) that:

1. relies on symbolic execution to analyze a subset of the control-flow paths of the program under
test and identify the execution conditions of the program paths in the form of path condition
formulas over the symbolically represented program inputs;

2. searches for the worst feasible program path with an evolutionary algorithm based on a cost
function, namely, the amount of executed instructions, which it measures against each pro-
gram path during symbolic execution, and uses as the fitness function to steer the evolutionary
algorithm to probabilistically select increasingly worse program paths;

3. solves the path condition of the worst identified program path to a satisfying assignment of
the program inputs, thus producing a test case that concretely executes the worst program
path.

As main distinctive characteristic with respect to WISE and SPF-WCA, our ESE approach anal-
yses the program directly in the target (large) scope, thus avoiding both the burden for the testers of
having to identify any suitable way of scaling from small to large inputs and the issues due to a pos-
sible mismatch between the behaviour of the program with small and large inputs, respectively. ESE
embraces a meta-heuristic path selection strategy based on a ‘memetic’ algorithm. Memetic algo-

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

3 0f 25

rithms are evolutionary algorithms that hybridize genetic and local search algorithms, such that the
candidate solutions identified with a genetic algorithm can be improved with focused optimizations
within the local search algorithm. The ESE memetic heuristic is driven by the WCET fitness func-
tion that measures the execution cost of the program paths as the number of executed instructions
and, in turn, includes (i) a genetic algorithm that fosters the combination of the execution conditions
from the already explored program paths, aiming to reveal sets of execution conditions that corre-
spond to incrementally worse program paths and (ii) a local search procedure, executed at regular
intervals, that attempts atomic changes to the current path condition, aiming to further refine the
decision sequences of the worst program path identified so far.

A core novelty of ESE with respect to other search-based test generation algorithms is concerned
with the evolutionary operators of the memetic algorithm, which ESE defines based on comput-
ing and manipulating symbolic path conditions, whereas traditional dynamic search-based testing
algorithms commonly rely on evolutionary operators that directly manipulate the concrete program
inputs of the incrementally generated test cases [15—17]. The intuition that underlies the choice
and the definition of the ESE evolutionary operators is that the path conditions sample the possible
program paths more effectively than concrete inputs, since there is a one-to-one mapping between
distinct path conditions and distinct program paths, while the possible input values may unevenly
distribute across the classes of inputs that trigger distinct program paths, up to some paths being
executable only with singular and hard to be sampled inputs. To the best of our knowledge, the ESE
algorithm is unique in exploiting the synergy between symbolic execution, which contributes the
ability to identify the execution conditions that characterize the program paths, and a memetic path
selection heuristic, which contributes to the ability of heuristically (i.e. not exhaustively) exploring
huge path spaces. In the experiments reported in this paper, we investigated our hypotheses about the
ESE evolutionary operators by comparing ESE with the search-based test generator EvoSuite that
uses evolutionary operators based on manipulating concrete inputs and that we purposely adapted
to use the same fitness function as ESE.

We presented ESE for the first time at the International Symposium on Software Reliability Engi-
neering (ISSRE), in 2018 [18]. This paper properly extends our previous work in several significant
ways. First, since the previous paper, we re-engineered the ESE prototype that we use for the exper-
imental evaluation of the approach. The new prototype solves many performance issues that, at the
time of the previous paper, were hampering us to report conclusive results for some experiments.
Thus, this paper reports refined empirical data (4) that provide a more comprehensive picture of the
potential of the ESE approach than in the previous paper. Second, this paper includes a new set of
replications of the experiments that investigate the sensitivity of the ESE approach with respect to
the main parameters of the memetic algorithm, namely, the number of individuals (path conditions)
in each generation of the genetic algorithm, the probability of applying mutations to the individ-
uals, the amount of good individuals that survive across subsequent generations (elitism) and the
frequency of calls to the local search step of the algorithm. Finally, this paper originally discusses
and experiments the merit of the evolutionary operators of ESE, based on symbolic path conditions,
with respect to the alternative choice of using the same fitness function as ESE, but using traditional
dynamic operators that manipulate concrete inputs.

The paper is organized as follows. Section 2 motivates our research by exemplifying the existing
techniques, WISE and SPF-WCA, and their limitations on a set of sample programs. Section 3
presents our novel technique for WCET testing in detail. Section 4 discusses a set of experiments
that evaluate our technique both in absolute terms and in comparison with WISE and SPF-WCA.
Section 5 acknowledges the related work in the field. Finally, Section 6 summarizes our conclusions
and outlines directions of further research.

2. MOTIVATION

This section discusses a set of examples that highlight the limitations of the state-of-the-art WCET
testing techniques, thus motivating the new technique proposed in this paper.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

4 of 25 AQUINO ET AL.

Listing 1: is_palindrome

"o

Decides if the given list is a palindrome.

Worst case: a palindrome 1list.
def is_palindrome(1l):
for i in range(len(l)):
if 1[i] !'= 1[len(1l) — 1 — i)]:
return False
return True

O W Jo U b WN

=

The two phases symbolic execution approach that we surveyed in the introduction was
first proposed in the technique WISE [8]. We illustrate WISE with reference to the program
is_palindrome in Listing 1 that inspects an input list to answer whether it is palindromic. For
the input lists of a fixed size, a WCET test case amounts to executing the program with a list that is
indeed palindromic, thus causing the maximum number of iterations of the loop in the program. To
find a WCET test case for this program, WISE starts with the exhaustive symbolic execution of the
program in a restricted input scope that suffices to limit the feasible program paths to a manageable
amount. The way to express the restriction tightly depends on the characteristics of the inputs of the
program under analysis and must be thus indicated by a test analyst in the general case. If the input
is a list of primitive values, as in the case of the program in Listing 1, WISE can work by bounding
the size of the input list to few items.

For the program in Listing 1, considering only lists with five items limits the number of possible
execution paths to three feasible (and three infeasible) paths. The feasible paths correspond to the
executions in which the program exits the loop during the first or the second iteration, or completes
all the five iterations, respectively. Symbolic execution captures these paths with the path conditions
(1) a1 # as, (i) @1 = a5 Az # a4 and (iil) @7 = a5 A @y = a4, respectively, being o1, 5
symbolic values that represent the five items in the input list. The last of these path conditions
characterizes the palindromic lists, for example, [1,2,0,2, 1]. The infeasible paths correspond to
the paths in which the program would exit the loop during the third, the fourth or the fifth iteration,
which is impossible in all three cases because the third list item cannot be different from itself, and
the conditions to exit at the fourth, or the fifth iteration contrast with the assumptions made at earlier
iterations. Symbolic execution identifies that these three paths are infeasible because they map to
unsatisfiable path conditions, for instance, the path condition of the path that exits the loop at the
fourth iteration is &y = @5 A @p = 4 A 3 = A3 A 04 F# 02, in wWhich the second and the fourth
conditions are mutually contradictory.

For the program of Listing 1, WISE would essentially work as follows. It symbolically executes
the program with respect to a small input list, for example, with the input list bounded to five items
as above mentioned. Then, for each feasible path yielded by symbolic execution, it measures the
number of instructions traversed in the path and selects the path that executes the highest amount
of instructions. For the lists with five items, it obtains that the worst path is the one that completes
five iterations of the loop in the program. Next, it observes that symbolic execution consistently
selected the false branch of the if-statement inside the loop, and thus it infers that forcing symbolic
execution to select this branch consistently guides the analysis throughout the worst path of the
program. Indeed, using this guidance policy, WISE can efficiently analyze the program of Listing
1 for arbitrarily large input lists, because the guidance policy steers symbolic execution to explore
only one path, and exactly the worst path of the program. For instance, considering input lists with
100 items, the above guidance policy leads WISE to explore the single path whose path condition is
o] = 01090 A 0 = Qg9 A 03 = lgg A -+ A i59 = 051 and then generates the WCET test case by
solving this condition to actual values.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

5 of 25

Listing 2: alternate_0

1w
2 Iterates an expensive task based on the values of the 1list.

3

4 Worst case: a list that alternates zeros and non—zero values.
5 wun

6 def alternate_0(1):

7 for i in range(len(l)):

8 if 1[i] == 0:

9 check =1 — (i % 2)
10 else:
11 check = i % 2
12
13 if check != 0:
14 execute_expensive_task()

The SPF-WCA approach [9] extends WISE, synthesizing sophisticated guidance policies in
which the decisions to make at the relevant decision points must not be consistently the same, as
in the above example, but may vary depending on the history of decisions made during symbolic
execution. Listing 2 exemplifies the program alternate_0 for which SPF-WCA improves on
WISE. For this program, the WCET test cases amount to executing the program with lists that
contain zero and non-zero numbers at even and odd locations, respectively, thus making function
execute_expensive_task () execute at all iterations of the loop in the program. To execute
the worst case path of the program in Listing 2, symbolic execution must proceed in strict alterna-
tion through the true and false branches of the first if-statement inside the loop. In this case, WISE
would synthesize an ineffective guidance policy, since it just observes that both decisions shall be
allowed at that if-statement, and this results in providing no actual guidance. Instead, SPF-WCA
is able to compute an effective policy that guides symbolic execution to select the frue branch if it
selected the false branch at the previous traversal of the if-statement and the vice versa. SPF-WCA
can be instantiated to use decision histories of any size, but for this example, it suffices to inspect
only one previous decision.

In this paper, we question the general validity of the fundamental assumption that underlies both
WISE and SPF-WCA, that is, we question that the analysis of the program with restricted inputs can
always unveil a regular worst case behaviour. We argue that in the general case, the worst program
path can either be irregular across increasingly large input bounds or even correspond to different
program behaviours for different boundings. Below, we provide examples of these observations.

Listing 3: depth_first_search

1 mmw
2 Determines if the vertex "finish" is reachable from the vertex "start"
3 1in the given graph.

4

5 Worst case: a fully connected directed graph, except for the vertex

6 "finish" that is reachable only from the "start" vertex of which it is
7 the last neighbor.

g wun

9 def dfs(graph, start, finish):

10 return do_search(graph, start, finish, []);

11

12 def do_search(graph, current, finish, visited):

13 if current == finish:

14 return true;

15

16 visited.append(current)

17

18 for neighbor in graph.outgoing(current):

19 if not neighbor in visited:

20 if do_search(graph, neighbor, finish, visited)

21 return true;

22 return false;

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.

DOI: 10.1002/stvr

6 of 25 AQUINO ET AL.

Listing 3 shows the dfs program for which the branch sequences of the worst path cannot be
captured with WISE and SPF-WCA. The program implements a depth-first visit to find if there
is a path that connects two vertices ‘start’ and ‘finish’ in a graph. The worst case happens with
a directed graph in which all vertices but finish are fully interconnected, and the vertex finish is
connected only to start and listed as its last neighbour. A graph with this structure requires the
program to visit all the vertices in the graph, and the maximum amount of edges for each vertex,
while requiring to backtrack from the full visit to find the wanted path. For this program, in any
input restriction in which the input graph has a fixed amount of vertices, the worst case graph leads
symbolic execution through a sequence of decisions such that (i) the worst path includes both at
least a true and at least a false outcome for all decision points in the program, thus making WISE be
unable to identify an effective guidance policy, and (ii) the decision history needed to identify the
right decision at each point of the sequence is a decision history of different size for each considered
input restriction, which makes SPF-WCA be unable to identify a guidance policy. For instance,
with reference to graphs of four vertices, the worst case path traverses the first if-statement in the
do_search function with the sequence of decisions (false, false, false, true), where the first true
decision happens after three false decisions, while with reference to graphs of five vertices the
sequence should be (false, false, false, false, true), where the first true decision happens after four
false decisions.

Listing 4: memory_fill

1 wnw
2 Copy non—zero values in a buffer of 16 cells.
3
4 Worst case: a list of non—zero values.

5 mnn

6 def memory_fill(1l):

7 memory = [@] * 16
8 free = 16

9

10 if len(l) <= free:

11 for i in range(len(l)):

12 memory[i] = 1[i]

13 return

14

15 for i in range(len(1l)):

16 if 1[i] != @:

17 free =1

18 if free >= 0:

19 memory [free] = 1[1i]

Listing 4 shows the memory_£i11 program for which the worst path cannot be observed in a
suitable input restriction. The program copies a list of inputs into a fixed size buffer with 16 cells,
aiming at copying the largest set of non-zero values that fit in the buffer. The program handles
two cases: (i) if the amount of inputs is less than the size of the buffer, the program optimizes its
performance by making a straight copy of all inputs; (ii) otherwise, it inspects the value of each input
and copies only the largest fitting set of non-zero values. The WCET test case of this program is an
input larger than the buffer and comprised non-zero values only since each non-zero value makes
the program execute the longest block of instructions. Interestingly, this WCET test case reveals a
performance bug, since the program wastes time to scan inputs beyond the last one that fits in the
buffer. This turns out being also a security vulnerability since an attacker might feed the program
with enormous inputs to cause a denial of service.

The worst path of the program showed in Listing 4 cannot be observed when bounding the input
list to less than 17 items, since with these inputs the program executes only the part of the algorithm
that makes a straight copy of all inputs. Similarly, a scope with 17 input items leads to 217 possible
execution paths, which cannot be exhaustively analyzed with symbolic execution in reasonable time.
Indeed, for this program, both WISE and SPF-WCA would limit the restricted analysis to at most
16 input items, thus failing to analyze the part of the code that corresponds to the worst case path.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

7 of 25

Another similar example is reported in the seminal paper of WISE [8], in which the authors
discuss a third-party implementation of quicksort (taken from the Java Development Kit (JDK)
1.5) that they considered as an experimental subject. They notice that the JDK-1.5 quicksort included
the optimization of using a median-of-9 pivot when sorting arrays with more than 40 items and
a median-of-3 pivot when sorting smaller arrays. Thus, they downgraded the implementation to
always use a median-of-3 pivot, acknowledging that otherwise, the guidance policy computed in the
small scope would be inconsistent with the behaviour of the program with more than 40 inputs.

The next section presents our technique for WCET testing whose core novelty is to search for the
worst case behaviour of a program by heuristically analyzing it directly in the target scope, thus not
suffering the above issues.

3. EVOLUTIONARY SYMBOLIC EXECUTION

This section presents our novel technique for WCET testing that works by combining symbolic
execution with an evolutionary path selection strategy based on a memetic search algorithm. We
refer to this technique as Evolutionary Symbolic Execution (ESE). ESE considers the set of the
feasible program paths as the search space, through which it steers symbolic execution to explore
a sample of incrementally selected program paths, up to ultimately identifying a program path that
reveals the worst case execution time of the program. Then, it generates the WCET test case by
exploiting the symbolic representation of this path. The core of ESE is a memetic algorithm that
incrementally selects the program paths to explore during the search, with the aim of identifying the
WCET behaviour as quickly as possible.

3.1. Overview of the ESE algorithm

Algorithm 1 outlines the workflow of our ESE technique in pseudocode, which is also graphically
illustrated in Figure 1. The input comprised the program under test and a set parameters to configure
the algorithm as we describe below. The algorithm starts with generating an initial set (referred to
as population) of randomly selected feasible paths (Line 1). The details of the algorithm RANDOM-
PATHSAMPLING(), which underlies this step, are presented in Section 3.2. In a nutshell, this step
steers symbolic execution with a random path selection strategy, stopping after visiting a predefined
amount of popsize program paths. We refer to each symbolically analyzed path as an ‘individual’
of the current population. An individual stores the path condition computed for the corresponding
path, and the counting of the instructions traversed while symbolically executing that path. As a
large majority of techniques for WCET analysis [8, 9], we assume that the number of instructions
that are executed along a program path is a good proxy of the execution time of the program along
that path. In our search-based algorithm, the function that associates the explored program paths,
that is, the individuals, with the corresponding amount of executed instructions plays the role of the
‘fitness function’ that the algorithm aims to maximize.

Next, the algorithm continues with symbolically executing additional program paths, building on
the knowledge of the path costs observed in the current population, to select program paths that
might improve on the fitness of the current ones. Working in the style of genetic algorithms [13, 14],
we specify the path selection strategy that we use in this step in the form of a crossover mechanism
(Lines 4-7) that exploits the path conditions of (pairs of) already explored paths (selected as the
parent pairs at Line 4) to steer symbolic execution to traverse new feasible program paths (the
children at Line 6) that might improve on the fitness of the parents. The SELECTION() called at Line
4 corresponds to the classical selection operator of genetic algorithms that picks random individuals
from the current population, with the probability of picking each individual being proportional to its
current fitness. Section 3.3 presents the details of the algorithm CROSSOVER() (Line 6) that is the
core of the crossover mechanism. It consists in enforcing symbolic execution to comply with subsets
of execution conditions selected and combined from the parents’ path conditions. We build on the
intuition that the execution conditions of the parents may convey costly subpaths to propagate in the
children, while the children may still include other (possibly newly explored) subpaths that are not
constrained by those execution conditions.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

8 of 25 AQUINO ET AL.

Figure 1. Workflow of the ESE algorithm 1

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

9 of 25

Then, our algorithm consolidates (Line 11) the results of the crossover by shaping a new pop-
ulation that includes a small set of the currently fittest (the worst program paths) individuals
(EL1TISM(), Line 9) and a fitness-biased random selection of the others (SURVIVALSELECTION(),
Line 10) in the relative amounts specified by parameter elitesize and its complement, popsize—
elitesize, respectively. The algorithm iterates through this process within a predefined testing budget
(TESTINGBUDGETEXHAUSTED(), Line 3) that can be specified either as a timeout or a maximum
amount of iterations.

Algorithm 1 The evolutionary symbolic execution algorithm

Input :program, the program under test
popsize, the number of program paths that shall be explored at each iteration
elitesize, the number of best-fit program paths that shall be retained at the next iteration
mprob, the probability of applying the mutation operator during crossover
Isperiod the number of iterations before calling the local search algorithm
Isattempts the number of optimization attempts in the local search algorithm
Output :a test case that executes the worst program path found in program

1 population <— RandomPathSampling(program, popsize)

2 generations < 0

3 While TESTINGBUDGETEXHAUSTED() do

4 parentpairs <— Selection population

5 for parenty, parent, in parentpairs do

6 childy, childy, <— CROSSOVER (program, parenty,, parent,,, mprob)
7 offspring < offspring U {child,, } U {child,, }

8 population < population U offspring

9 elite, non-elite < ELITISM (population, elitesize)

10 survivals <— SURVIVALSELECTION (non-elite, popsize — elitesize)
11 population <— elite U survivals

12 generations <— generations + 1

13 if generations % Isperiod = O then

14 worst <— WORSTINDIVIDUAL (population)

15 worst’ < LOCALSEARCH (program, worst, Isattempts)

16 population < (population —{worst}) U {worst’}

17 return SOLVEPATHCONDITIONTOTESTINPUTS(WORSTINDIVIDUAL(population))

18 Function TESTINGBUDGETEXHAUSTED()

19 returnwhether we exhausted the testing budget, because of having either executed the
maximum amount of iterations or expired the timeout

20 Function SELECTION (population)

21 return a set of |population| /2 randomly selected pairs (iy; i), with iy, i € population.
At each random pick, the probability of selecting a given i € population is proportional to
its current fitness

22 Function ELITISM (population, elitesize)

23 return the elitesize fittest individuals (the worst program paths) out of population
24 Function SURVIVALSELECTION (population, amount)
25 return a set of amount individuals picked at random out of population. At each random

pick, the probability of selecting a given i € population is proportional to its current fitness
26 Function WORSTINDIVIDUAL (population)

27 return the fittest individual (worst program path) out of population
28 Function SOLVEPATHCONDITIONTOTESTINPUTS(individual)
29 return fest inputs generated by solving the path condition of individual with a

constraint solver

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

10 of 25 AQUINO ET AL.

We observe that the SURVIVALSELECTION() step at 10 of Algorithm 1 consists of the same type
of computation as the SELECTION() step at 4. We keep them with separate names to emphasize the
different purposes of the two steps in the context of Algorithm 1: SELECTION() aims to select pairs
of individuals to feed the crossover, while SURVIVALSELECTION() propagates individuals across
subsequent generations.

At regular intervals, that is, when the number of iterations is multiple of a predefined Isperiod
period value (Line 13), the algorithm accomplishes a local search, trying to further optimize the
worst program path computed so far (Lines 14—16). This step indeed classifies the algorithm as
‘memetic’, and not simply as ‘genetic’. Section 3.4 presents the algorithm LOCALSEARCH() (Line
5) in detail. It consists in a hill-climbing strategy that incrementally negates a single random con-
dition out of the ones in the path condition of the current worst individual, in the attempt to reveal
suboptimal decisions that may further worsen the execution cost when inverted. After a fixed amount
of attempts, specified by the parameter Isattempts, it returns the worst individual identified along the
process, or the initial individual unchanged if all attempts failed, which replaces the previous worst
individual thereon (Line 16).

Upon exhausting the testing budget, the algorithm returns a test case that it obtains by solving
(with a constraint solver, e.g., tZ3*[19]) the path condition of the worst individual to concrete inputs
that make the worst program path execute (Line 16).

Section 4 summarizes all the configuration parameters of the algorithm and their concrete values
in the context of our experiments.

3.2. Exploring and representing program paths

Our search-based algorithm computes the initial population of candidate solutions by exploring a
random sampling of feasible program paths with symbolic execution. Algorithm 2 and Algorithm 3
specify this computation in pseudocode.

Algorithm 2, that is, RANDOMPATHS AMPLING(), initializes a population with npaths individuals
by iterating (Algorithm 2, Line 2) as follows. It analyzes the program under test with symbolic
execution, to compute the path condition and the number of instructions of a randomly chosen path
(Algorithm 2, Line 3), and then encodes these results as an individual object, that is, a candidate
solution, of the search algorithm (Algorithm 2, Line 4). The conjunctive formula that comprises the
path condition is the ‘chromosome’ representation of the individual, whereas the atomic constraints
represent the ‘genes’. The number of instructions in the program path is the measurement of the
fitness of the individual.

Algorithm 2 RANDOMPATHSAMPLING (program, npaths)
input :program, the program under test npaths, the number of paths to be randomly sampled

output :a population of randomly sampled program paths (individuals)

population < @
for i <— 1 to npaths do
pc, instrs < SYMBOLICEXECUTION(program)
individual < INDIVIDUAL(pc, instrs)
population < population U {individual}
return population
Function INDIVIDUAL (pc, instrs)
return an individual that represents a program path as a structure that contains the path
condition and the amount of instructions of the program path

(BN e NV R N O R

473 is a SMT constraint solver. Given a formula in a supported logic theory, e.g., linear formulas over integers, non
linear formulas over reals, and so forth, it can either prove that the formula is satisfiable by computing a satisfying
assignment of the variables in the formula, or yield a proof that the formula is unsatisfiable.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

11 of 25

Algorithm 3, SYMBOLICEXECUTION(), specifies the exploration of a randomly chosen feasible
program path with symbolic execution. It starts with building an initial symbolic state in which the
program inputs are assigned to symbolic values (Algorithm 3, Line 2), and then iteratively computes
the possible successor states as in classic symbolic execution, that is, by manipulating the symbolic
representation of the current state according to the semantics of the current program statement and
updating the program counter to point to the next statement to be executed (Algorithm 3, Line 4).

The function SYMBOLICEXECUTIONSTEP() at Line 13 formalizes the semantics of executing a
symbolic execution step with reference to simplified programs that include only assignment state-
ments of the form x:=e ;¢ and conditional jump statements of the form if (¢) £ else {”,
where x generically denotes a program variable, e and ¢ denote code expressions over program vari-
ables and ¢’ and £” denote the program locations reached as result of the execution of the statements.
A symbolic state is a triple (£, vv, pc), where £ is the current program location during symbolic
execution, vv are the current, possibly symbolic, values of the program variables, and pc (the path
condition) is the set of executability conditions assumed while symbolically executing the program
up to the current location. For instance, in the initial state (£, vvg, pco), £o is the entry point of the
program, vvg associates the program inputs to unconstrained, distinct symbolic values and pcy is
simply zrue because reaching the entry point is always reachable. From a generic state (€, vv, pc),
symbolic execution progresses by executing the program statement specified at the location £: If the
statement at £ is an assignment x : =e; £/, then we reach a new state (£, vv’, pc), where £’ is the next
program location, vv’ is the same as vv for all variables but x, which is now assigned according to
the result of the executed assignment, and the path condition is unchanged. If the statement at £ is a

Algorithm 3 SYMBOLICEXECUTION(program)
input :program, the program under test
output :the path condition and the number of instructions of a randomly selected program path
1 instrs <0
2 state < INITIALSYMBOLICSTATE(program)
3 while — ISENDSTATE(state) do
4 successors < SYMBOLICEXECSTEP(state)
5 state RANDOMSELECTION(successors)
6 instrs <— instrs + 1
7
8
9
1

pc < PATHCONDITION(state)
return pc, instrs
Function INITIALSYMBOLICSTATE(program)
0 return the initial symbolic state where all inputs are assigned as unconstrained

symbolic values
11 Function ISENDSTATE(state)

12 return whether this state corresponds to having reached the end of a program path
13 Function SYMBOLICEXECSTEP(state)
14 Let state = (£ v, pc) > where £ is the program location reached at state, vv are the

current symbolic values of the program variables at state, and pc is the current path
condition at state

{(,vv[x < [elvw] . pc)} ifst(f) = x 1= e}t/

{(,vv, pc Ac]vw), £, vv, pc A =[c]vw)} ifst(f) = 1f(c)l’elsel”

> where: st(£) is the statement that the program executes at location £, [[.] vv denotes the
evaluation of a program expression with respect to the values vv of the program variables,
and ¢’, £ are other program locations that can be reached as result of the execution of the
current statement

15 succ <«

16 return succ. > the successors of state by computing a single symbolic execution step
17 Function RANDOMSELECTION(states)
18 return a random state out of states

19 Function PATHCONDITION(state)
20 return the path condition of this state

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

12 of 25 AQUINO ET AL.

conditional jump i f (c) ¢ else {”,then we progress to two possible states, either (£', vv, pc’)
or ({”,vv, pc”), where £’ and £” are the program locations of the then-branch and else-branch of
the statement, respectively, the program variables are unchanged, and the path conditions pc¢’ and
pc” are obtained by conjoining the path condition pc to the positive and negative evaluation of the
conditional of the executed statement, respectively.

To explain the use of symbolic execution in our algorithm, the key observation is that symbolic
execution step may yield either a single successor state, when executing non-branching statements
in the program, like the statements that correspond to assignments of variables, or more than one
successor states, when executing branching statements, like the statements that evaluate conditions
at the decision points in the program. We refer to the standard embodiment of symbolic execution
that relies on a constraint solver to incrementally check the reachability of the successor states, by
testing the satisfiability of the corresponding path condition formulas, and discards any unreachable
successor state. When the solver confirms more than a successor state, our algorithm chooses a
random state out of those and continues the analysis on that state only (Algorithm 3, Line 5), until
meeting the end of a program path (Algorithm 3, Line 3). Our algorithm finally returns (Algorithm 3,
Line 8) the path condition of the analyzed program path. We remark that, the returned path condition
can be solved to a satisfying assignment with a constraint solver, to obtain concrete input values for
the corresponding program path in a test case.

This procedure guarantees that each run of symbolic execution according to Algorithm 3 explores
a single program path, which is feasible based on the outcomes of the constraint solver, and which
is randomly selected at each decision point where the execution might proceed through multiple
distinct feasible paths. As byproduct, the procedure measures the execution cost of the analyzed
path as the number of steps executed while symbolically analyzing the path (Algorithm 3, Line 6).

3.3. Genetic operators

We bootstrap our search-based algorithm with the random sample of program paths collected as
discussed in the previous section, and then proceed with steering symbolic execution to explore
additional program paths, by alternating between global and local search phases. The global search

Algorithm 4 CROSSOVER(program, parenty, parent,, mprob)
input :program, the program under test
parent, and parent,, two individuals of the current population
mprob, the probability of applying the mutation operator during crossover
output :two new individuals generated by crossing the path conditions of parent; and parent;
pci < PATHCONDITION(parenti;), V i € {1,2}
len; < the amount of conditionals in pc;, V i € {1,2}
cut; <— arandom integer between 1 and len;, V i € {1,2}
pre; < pcy [0: cuti] ™ pca [cuts : lens]
pres <— pca [0: cuty] ~ pey [cuty : leny]
children < @
for pre € {pre,,pre; } do
if random number in [0, 1] < mprob then
pre < MUTATERANDOM(pre)
10 pc, instrs < SYMBOLICEXECUTIONPRE(program, pre)
11 children < children U INDIVIDUAL(pc, instrs)
12 return children
13 Function MUTATERANDOM(pre)

[c<BEN I e NV I N R

el

14 return pre’ < pre with up to 10% of the conditionals removed
15 Function PATHCONDITION(state)
16 > ..as in Algorithm 3
17 Function INDIVIDUAL(pc, instrs)
18 >..as in Algorithm 2
© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.

DOI: 10.1002/stvr

13 of 25

phase is a genetic algorithm that exploits the information in the current population of candidate solu-
tions. The local search phase focuses on the best currently identified solution only. This subsection
describes our genetic algorithm, while we present the algorithm of the local search phase in the next
subsection.

Our genetic algorithm fosters the exploration of program paths that may probabilistically include
and combine both high-cost subpaths that were already observed in some current individuals, and
other, possibly new randomly explored subpaths of the program. The core of this computation is
done by the crossover operator of the genetic algorithm.

Algorithm 4, that is, CROSSOVER(), specifies the crossover operator in pseudocode. The crossover
works on pairs of individuals selected from the current population, here denoted as the inputs
parent, and parent,. As we already commented earlier in this section (Algorithm 1, Line 4) the
selection of parent, and parent, is accomplished as a random pick according to a non-uniform dis-
tribution, such that the individuals with higher fitness have higher probability of being selected than
the ones with lower fitness. This type of selection mechanism is standard in genetic algorithms, and
suits our algorithm with no particular adaptation, thus we do not discuss it further. We remark only
that our selection operator enforces parent, and parent, to be different individuals of the current
population.

Our crossover fosters symbolic execution to explore at most two additional program paths, and
enforces these paths to comply with partial sets of the execution conditions excerpted from the
path conditions of the two parents, parent; and parent,, thus possibly replicating subpaths of these
individuals. The algorithm (i) synthesizes two new conditions pre, and pre, by combining the
path conditions of the two parents (Algorithm 4, Lines 1-5), (ii) mutates each condition pre €
{pre,, pre,} with some probability (Lines 8-9) and (iii) exploits each condition pre € {pre;, pre,}
with symbolic execution to collect the offspring individuals that the crossover returns as result (Lines
10-11).

To synthesize the new conditions pre; and pre,, we cut the path conditions of the two parents
at random cutpoints and join the first part of the path condition of parent; with the second part of
the path condition of parent, (Algorithm 4, Lines 1-4) and the vice-versa (Algorithm 4, Line 5). In
this phase, the algorithm relies on the knowledge that symbolic execution yields conjunctive path
conditions and thus regards the path conditions simply as lists of clauses. Then, with predefined
probability mprob, we may mutate the new conditions (both pre; and pre,, either one, or none of

Algorithm 5 SYMBOLICEXECUTIONPRE(program, pre)
input :program, the program under test
pre, a set of preconditions
output :the path condition and the number of instructions of a randomly selected program path
whose path condition does not contradict pre

1 instrs <0

2 state < INITIALSYMBOLICSTATE(program)

3 while = ISENDSTATE(state) do

4 successors < SYMBOLICEXECSTEP(state)

5 successors < PRUNEUNSATSTATES(successors, pre)

6 if successors = @ then

7 throw SymbolicExecutionException

8 state < RANDOMSELECTION(successors)

9 instrs < instrs + 1

10 pc < PATHCONDITION(state)

11 return pc, instrs

12 Function PRUNEUNSATSTATES(states, pre)

13 return states — {s € states, s.t. pre ~ PATHCONDITIONY(s) is unsatisfiable}

14 Function INITIALSYMBOLICSTATE, ISENDSTATE, SYMBOLICEXECSTEP,
RANDOMSELECTION,PATHCONDITION

15 >..as in Algorithm 3

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.

DOI: 10.1002/stvr

14 of 25 AQUINO ET AL.

them) by removing some inner conditions chosen at random (Algorithm 4, Lines 8-9). The actual
mutation algorithm removes from a minimum of a single condition up to a maximum of 10% of
the inner conditions. After each removal, it decides with even probability either to stop or continue
with removing a further condition; it stops necessarily after removing the maximum number of
conditions.

Algorithm 5, that is, SYMBOLICEXECUTIONPRE(), specifies the symbolic exploration of a
feasible program path that complies with a set of conditions pre synthesized in the crossover algo-
rithm. The symbolic execution algorithm mimics all steps of Algorithm 3 with the only additional
behaviour of pruning the symbolic states that are incompatible with the precondition pre (Algo-
rithm 5, Lines 5-7). We rely on the constraint solver to decide whether the path condition of a
current symbolic state is satisfiable in conjunction with pre and prune the symbolic states for which
the solver returns an unsatisfiability verdict (Algorithm 5, Line 5). If all successor states happen to
be incompatible with pre (Algorithm 5, Line 6), the symbolic execution algorithm terminates with
an exception (Algorithm 5, Line 7) indicating that the precondition prevents the execution of any
feasible path of the program. The crossover does not generate the individual in this latter case—in
Algorithm 4, for simplicity, we do not show this exceptional behaviour explicitly.

This procedure guarantees that each (unexceptional) run of symbolic execution according to
Algorithm 5 explores a single feasible program path, which complies with subsets of the execu-
tion conditions of the parent individuals, thus likely contains subpaths that belong also to those
individuals, and which is randomly selected at any decision points with multiple paths that are not
constrained by the precondition pre.

3.4. Local search

At regular intervals, our algorithm accomplishes a local search phase in which it tries to make small
focused changes to the individual that has the maximum cost in the current population, trying to
further optimize that candidate solution. In this phase, the algorithm proceeds in the style of the ‘hill
climbing’ algorithm, that is, incrementally changing single elements of the solution and accepting
the changes that result in better solutions. The changes consist in exploring program paths that differ
from the current one for the outcome at a single decision point.

Algorithm 6, that is, LOCALSEARCH(), specifies the local search algorithm in pseudocode. The
input individual denotes the individual with maximum cost in the current population at the beginning
of the local search. The algorithm performs a fixed amount of iterations (Line 1). At each iteration,

Algorithm 6 LOCALSEARCH((program, individual, Isattempts)
input :program, the program under test
individual, an individual of the current population
Isattempts the number of optimization attempts in the local search algorithm
output :the worst individual identified by applying incremental local mutations
to the one in input
1 for attempt <— 1 to Isattempts do
2 pre < PATHCONDITION(individual)
3 pre < INVERTRANDOMCONDITION(pre)
4 pc, instrs < SYMBOLICEXECUTIONPRE(program, pre)
5 if instrs > individual.instrs then
6
7
8

individual <— INDIVIDUAL(pc, instrs)
return individual
Function INVERTRANDOMCONDITION(pre)

9 return pre’ < pre after negating a randomly chosen conditional
10 Function PATHCONDITION
11 > ..as in Algorithm 3
12 Function INDIVIDUAL
13 >..as in Algorithm 2
© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.

DOI: 10.1002/stvr

15 of 25

it inverts a condition chosen at random out of the path condition of the current individual, that is,
it replaces that condition with its logical negation (Lines 2-3). Then, it computes a new individual
in a similar fashion as we explained for the crossover operator (Line 4). If the new individual has
higher execution cost than the current one, the local search replaces the current with the new indi-
vidual (Lines 6-6), since the latter is closer to the optimal solution than the former, and iterates to
further optimize the new individual. Otherwise, the algorithm continues without changing the cur-
rent individual. The algorithm returns the individual with the highest cost identified throughout this
process.

The intuition that underlies the local search phase is that, when the global search computes some
solution that is close to the optimum, likely, it is a program path that mimics the worse program path
except for a small set of branch decisions. In this situation, the crossover is generally ineffective to
find the missing optimizations without altering other parts of the path. Conversely, trying a punctual
exploration of the possible changes is more likely to succeed. The local search is also effective
to identify subpaths with regular behaviour, for example, a subpath in which all decisions at an
if statement must regularly take the same branch (or alternated branches) for a given amount of
subsequent evaluations of that decision point. Although the global search may succeed to identify
a majority of the needed decisions, the fully regular sequence may appear like a singularity in the
search space. The local search may incrementally spot the suboptimal decisions and fix them.

4. EXPERIMENTS

We implemented a prototype of ESE for Python programs (ESE,)) and used it to experimentally
investigate the effectiveness of ESE with respect to a set of sample programs for inputs of increasing
size. In particular, our experiments address the following research questions:

1. What is the sensitivity of ESE with respect to the main parameters of the ESE algorithm?

2. Does ESE steer symbolic execution towards generating WCET test cases?

3. How does ESE compare with the state-of-the-art approaches for WCET testing, that is, WISE
and SPF-WCA?

4. What is the contribution of the evolutionary operators of ESE, which require computation and
manipulation of symbolic path conditions, over just using the WCET fitness function of ESE
with a purely dynamic search-based testing algorithm, for example, EvoSuite?

In RQI, we look at the sensitivity of ESE with respect to the main parameters of the evolutionary
algorithm, that is, the size of the population, the amount of the best individuals (elite) that survive
across subsequent generations, the frequency of mutations, and the frequency of the local search
steps.

In RQ2, we are interested in confirming whether ESE significantly outperforms the baseline
strategies of steering symbolic execution of analyzing the feasible program paths in either depth-first
or random order, respectively. We study RQ2 by using a proper configuration for ESE, determined
based on the results that we observed while studying RQ1.

In RQ3, we investigate the validity of the research hypothesis that we illustrated with the examples
in Section 2, where we discussed that the approaches WISE and SPF-WCA work well for programs
where the worst-case behaviour generalizes with regularity for inputs of increasing size, but perform
poorly in the cases in which there is no such regularity, while ESE can significantly outperform
WISE and SPF-WCA in these latter cases.

Finally, in RQ4, we compare ESE with a purely dynamic search-based algorithm, obtained by
adapting EvoSuite to use the same fitness function, that is, the count of executed instructions, as
ESE. We aim at investigating the specific merit of the novel evolutionary operators of ESE, defined
with respect to symbolic path conditions, in comparison to using evolutionary operators that directly
manipulate the program inputs.

Below, we introduce our prototype of ESE and discuss the setting and the results of our
experiments.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

16 of 25 AQUINO ET AL.

4.1. Evolutionary symbolic execution prototype

Our prototype ESE , y is implemented in Python, based on a purposely designed symbolic executor
for Python programs. The symbolic executor relies on the Z3 constraint solver [19], and works by
instrumenting that inputs data of the program under test, to make the Python interpreter handle the
inputs as symbolic values (similarly to the work of Saxena et al. on symbolic execution of JavaScript
programs [20]). It can currently handle input data that consist of integers and bounded collections
of integers.

4.2. Experiments setting

Our experiments challenge ESE, y to generate WCET test cases for the sample programs in Table I:
alternate_0, is_palindrome, dfs, and memory_fill are the programs that we already
discussed in Section 2, merge_sort and quicksort_jdk are the popular sorting algorithms
(in particular quicksort_jdk is the JDK-1.5 quicksort algorithm that switches from a mid-array
pivot for arrays with less than seven items, to a median-of-3 pivot and then a median-of-9 pivot
for larger arrays with less or more than 40 items, respectively), kmp (Knuth-Morris-Pratt) scans
a sequence while searching for an occurrence of a given subsequence, bfs (breadth-first search)
searches in a graph in breadth-first order. We tested these programs instantiating them with respect
to input lists or graph adjacency matrices that consist of 10, 50, 75 or 100 symbolic integers,
respectively. For kmp , we fixed the length of the searched subsequence to three symbolic integers.

These sample programs are representative of algorithms for the traversal of sequential and
recursive data structures. Traversals are key operations on data structures, and the traversal algo-
rithms often characterize the performance of programs [21]. Moreover, these sample programs
encompass worst case behaviours that manifest on program paths with both regular (in the case
of alternate_0, is_palindrome, merge_sort and bfs) and irregular (in the case of
quicksort_jdk, kmp, memory_fill and dfsl) decision sequences, and thus suite well for
assessing, with a controlled and fair experiment, the novel characteristics of ESE with respect to the
competing state-of-the-art techniques.

For each program and input size, we evaluated ESE both in absolute terms and in relative terms,
with respect to the competing approaches at the state of the art. In absolute terms, we compared
the execution cost measured by profiling the programs with the worst case inputs identified by
ESE,y, with the execution cost measured by using the manually identified worst case inputs. In
relative terms, we compared the worst case inputs computed with ESE,, y with the worst case inputs
obtained with symbolic execution equipped with either (i) the classical depth-first (DFS), (ii) random
path selection strategies (RAND) (iii) the guidance policies identified with either WISE [8] or (iv)

Table I. The programs considered in the experiments with their worst-case time complexity.

Program Extended name Category Complexity
alternate_0 Alternate zeroes Sequence checking O(n)
is_palindrome Is palindrome? Sequence checking O(n)
merge_sort Merge sort Sequence sorting O(nlogn)
quicksort_jdk Quicksort (JDK implementation) Sequence sorting O(n?)

kmp Knuth-Morris-Pratt Sequence search O(n)
memory_fill Memory fill Sequence operation O(n)

dfs Depth-first search Graph search On?)

bfs Breadth-first search Graph search O(n?)

Table II. The main features and differences between ESE and the compared approaches.

Feature ESE WISE SPF-WCA EvoSuite
Program versions (Restricted / Unmodified) U R R U
Program path analysis (Exhaustive / Heuristicy H E E H
Program path analysis (Symbolic / Dynamic) S S S D
© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.

DOI: 10.1002/stvr

17 of 25

SPFWCA [9] approaches, respectively. We also compared ESE with the worst case inputs obtained
with (v) EvoSuite adapted to use the count of executed instructions as fitness function.

Table II qualitatively classifies the features of ESE and the compared approaches, to enlighten
their main differences. Both ESE and EvoSuite analyze unmodified versions of the target programs,
while both WISE and SPF-WCA mostly refer to program versions in which they restrict the size of
the inputs (first feature in the table). Thus, as we showed in Section 2, the latter approaches suffer
from the limitation that they cannot find WCET test cases for the programs in which the WCET
behaviour manifests only with inputs of at a given, non-small size, while the former approaches
can in principle always identify the optimal WCET test cases for any target program. Both ESE
and EvoSuite analyze an heuristically selected subset of the program paths, while both WISE and
SPF-WCA exhaustively analyze all program paths under the chosen input restriction (second fea-
ture in the table). Thus, for programs in which the worst case executions regularly generalize across
inputs of increasing size, WISE and SPF-WCA deterministically identify optimal WCET test cases,
while the heuristic search procedures of ESE and EvoSuite cannot by-design guarantee the iden-
tification of optimal solutions. ESE shares with both WISE and SPF-WCA the characteristic of
analyzing the target program with symbolic execution, while EvoSuite relies on purely dynamic
analysis (third feature in the table). On the one hand, symbolic execution yields path condition for-
mulas that precisely characterize in prepositional logic the classes of inputs that lead to executing
different program paths, while EvoSuite computes only concrete inputs and analyze concrete exe-
cutions and may thus sometimes be stuck in analyzing multiple different inputs that all execute the
same program path. On the other hand, dynamic analysis is notoriously more efficient than static
analysis, and thus EvoSuite will generally analyze many much more candidate solutions than ESE,
when the two techniques are executed for equivalent time budgets.

To be fair, we implemented the four competing approaches that rely on symbolic execution,
that is, DFS, RAND, WISE and SPF-WCA, on top of the same symbolic executor for Python that
we use in ESE. DFS,y makes the symbolic executor visit the program paths in depth-first order.
RAND,, y works according to the random path selection strategy that we illustrated in Algorithm 3.
WISE, y and SPF-WCA , y implement the algorithms of WISE and SPF-WCA, respectively, whose
core step is to train a guidance policy for steering symbolic execution to identify the worst case
(recall Section 2). WISE, y trains the guidance policy by analyzing the target program with ini-
tially unitary and then increasingly larger input bounds, until exhaustion of a training time budget.
It then selects the worst path identified for the largest bound for which it successfully completes
the exhaustive analysis of the program, and maps this path to a guidance policy, decision point
—> decisions: the guidance policy associates the program decision points with the corresponding
decisions (none, true, false or both true and false) taken at least once along that path. WISE, y
trains the guidance policy in a similar way, but builds a finer-grained guidance policy specified
as (decision point, decision history) —> decisions, for the possible decision histories of a given
length. SPF-WCA , y uses decision histories of Length 1.

We adapted EvoSuite by implementing the instruction-counting fitness function, using the instru-
mentation that EvoSuite natively includes to monitor the instructions traversed during the execution
of the program under test, and adding the glue-code to make EvoSuite use this new fitness func-
tion. We ran EvoSuite with its default configuration and the new fitness function, plus the options
-generateTests and -Dchromosome_length=120. The former option instructs EvoSuite
to work with a population of test cases, rather than a population of test suites®, while the latter option
sets the maximum length of the generated test cases to a maximum of 120 lines of code. In particu-
lar, EvoSuite generates test cases that include the method calls to construct the lists (or the adjacency
matrices) that the programs under test take as input, fill the lists (or the adjacency matrices) with
values, and call the programs under test with these inputs. Thus, test cases that may consist of up to
120 lines of code provide sufficient room for EvoSuite to s et all values of the lists (or the adjacency
matrices) considered in our experiments. Since EvoSuite works for programs in Java Bytecode, we

$We remark that using EvoSuite with a population of test suites, which is often the favoured way of executing EvoSuite
in many scientific experiments with the tool [15], would be a bad choice in our context, where we look for a single
optimal test case that maximizes the execution cost of the program under test.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

18 of 25 AQUINO ET AL.

implemented a Java equivalent version for all subject programs listed in Table I At the end of each
experiment, we re-measured the WCET of the worst-case inputs generated with EvoSuite by execut-
ing these inputs against the Python version of the corresponding subject programs, aiming to obtain
measurements that we can compare across the experiments with EvoSuite and ESE, respectively.

We ran ESE, y, DFS , ¥, RAND, y and EvoSuite against each program instance with a time bud-
get of 60 min. For WISE, y and SPF-WCA , y, we split the time budget in two tranches of 30 min
each, for the training phase and the test generation phase, respectively, thus allowing for guid-
ance policies trained on inputs of meaningful size, while still leaving adequate time to exhaustively
analyze the decision points that the guidance policy does not constrain. Hereon, we omit the ‘py’
subscript when referring to the prototypes.

4.3. RQI—Sensitivity of ESE parameters
We studied the sensitivity of ESE with respect to the following key parameters of the algorithm:

e popsize, the number of individuals that are processed during each generation;

e elitesize, the amount of the best individuals that are propagated between subsequent
generations;

e mprob, the frequency of mutation for new offsprings;

e 1lsperiod, the number of generations before a new phase of local search happens.

We studied the sensitivity of ESE by conducting experiments that test to what extent varying the
values of these parameters impacts the precision of the WCET test cases that ESE computes, yield-
ing test cases that approximate either well or badly the optimal WCET cost of the subject programs
for large inputs of size 100. Specifically, we considered the following values of the parameters:

popsize set to 10; 50; 75; 100;
elitesizesetto0; 1;5; 10;
mprob set to 0.0; 0.2; 0.5; 1.0;
lsperiod setto 0; 10; 50; 100.

In the spirit of pairwise testing, we selected a set of combinations of these values that suffice to
evaluate the interactions between all values of any pair of parameters, that is, the 16 combinations
indicated in the first four columns of Table III. The other columns of the table report the detailed
results of the experiments with each subject program for each considered combination of parameter
values.

Table III. Results of ESE configured with different values of its parameters.

WCET test case execution cost (#instructions)

popsize elitesize mprob Isperiod

alt. is_p. merg. quic. kmp memo. dfs bfs
10 0 0 0 549 73 4516 2808 584 396 141 194
10 5 0:5 10 601 202 4528 2665 596 422 193 222
10 1 0:2 50 591 202 4526 2730 592 422 193 220
10 10 1 100 589 202 4520 2635 588 418 191 220
50 5 0:2 0 559 202 4532 2256 598 404 163 198
50 0 1 10 595 202 4525 2767 598 418 193 218
50 10 0:5 50 595 202 4526 2647 595 421 193 220
50 1 0 100 567 202 4521 2682 590 413 193 216
75 0 0:5 0 571 75 4517 2849 600 405 145 198
75 5 0 10 601 202 4521 2711 589 422 193 222
75 1 1 50 587 202 4523 2578 611 421 193 222
75 10 0:2 100 575 202 4526 2742 594 415 191 222
100 5 1 0 563 202 4520 2503 593 404 159 204
100 0 0:2 10 601 202 4526 2776 587 422 193 222
100 10 0 50 585 202 4527 2664 597 420 193 222
100 1 0:5 100 585 202 4521 2638 592 411 193 210

ESE, Evolutionary Symbolic Execution; WCET, Worst-Case Execution Time.

© 2019 John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

19 of 25

popsize elitesize mutateprob lsperiod

100 0 0.2 10—
75 5 0.0 10—
10 5 0.5 10—
50 0 1.0 10—
10 1 0.2 50 I——
50 10 0.5 50 I
75 1 1.0 50 I——
100 10 0.0 50 I
75 10 0.2 100 —
10 10 1.0 100
50 1 0.0 100 —
100 1 0.5 100 —
100 5 1.0 O ——
50 5 0.2 O I—
75 0 0.5 O I

10 0 0.0 O

I
o
o
i

02 03 04 05 06 07 08 09 10
WCET

Figure 2. Comparison of the average (normalized) results of Evolutionary Symbolic Execution for the tested
configurations of parameters. WCET, Worst-Case Execution Time

Figure 2 visualizes a summary of the results, comparing the WCET cost that we measured with
the test cases computed with ESE, on average across the eight subject programs. To control for the
different length of the worst-case paths of the subject programs, and avoid average figures domi-
nated by the results obtained for the programs with the longest worst-case paths, we normalized the
‘absolute’ “WCET’ cost computed for each subject program with respect to the reference optimal
value obtained when executing that program with the manually identified worst case input. The nor-
malized values range between zero and one and express the distance from achieving WCET costs
equal to the reference ones.

The data in Figure 2 suggest a low sensitivity of ESE with respect to the four parameters: 12
out of 16 considered combinations result in an average normalized WCET cost that ranges between
0.95 and 0.97. Looking at the distribution of the values of each single parameter across the tested
combinations, the only clear observation that we can make is that the frequency of the local search
phase influences the results: The rarer the frequency of the local search phase, the lower the rank of
the corresponding experiments in Figure 2. Indeed, when the ESE algorithm is configured to execute
without the local search phase (1speriod = 0), ESE obtained the lowest WCET costs in these
experiments.

In summary

ESE has a low sensitivity with respect to the parameters population size, elite size and mutation
probability. However, it is very sensitive with respect to the choice of the period with which it
executes the local search phase: too rare local search reduces the effectiveness of the technique.

Table IV. Parameters of ESE in the experiments.

Parameter Description Value
popsize The size of the population 50
elitesize The individuals retained as elite 5
mprob The probability of mutation 0:2
lsperiod The generations before local search 10
lsattempts The changes during local search 25
timeout The time budget for the search (min) 60

ESE, Evolutionary Symbolic Execution

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

20 of 25 AQUINO ET AL.

Table V. Results obtained with ESE and the competing techniques for the subject programs for
different size of the inputs.

WCET test case execution cost (#instructions)

Program Size
Manual ESE RAND DFS WISE SPF-WCA EvoSuite
alternate_0 10 61 61 61 61 61 61 61
50 301 301 277 269 267 301 301
75 451 451 413 393 391 451 409
100 601 601 543 517 517 601 547
is_palindrome 10 22 22 22 22 22 22 3
50 102 102 37 102 102 102 3
75 152 152 37 152 152 152 3
100 202 202 37 202 202 202 3
merge_sort 10 279 279 279 277 276 279 279
50 2019 2016 2003 1939 1939 2008 2018
75 3249 3239 3218 3108 3108 3242 3249
100 4549 4530 4501 4341 4341 4527 4535
quicksort_jdk 10 348 321 302 248 248 296 319
50 1665 1485 1232 548 512 562 1407
75 2528 2125 1750 673 635 685 2170
100 3666 2730 2252 798 764 846 2696
kmp 10 83 83 80 83 83 83 54
50 363 334 306 306 306 306 214
75 538 478 444 442 442 442 317
100 713 606 587 581 578 578 414
memory_fill 10 25 25 25 25 25 25 25
50 222 222 212 188 186 186 222
75 322 322 301 263 261 261 322
100 422 422 390 336 334 334 422
dfs 10 18 18 18 18 18 18 18
50 94 94 82 78 78 85 64
75 156 156 122 116 116 116 86
100 193 193 143 133 133 138 129
bfs 10 26 26 26 26 26 26 26
50 114 114 102 114 114 114 114
75 182 182 146 182 182 182 182
100 222 222 176 222 222 222 222

DFS, classical depth-first; ESE, Evolutionary Symbolic Execution; RAND, random path selection strate-
gies; SPF-WCA, Symbolic Path FinderWorst-Case Analysis; WCET, Worst-Case Execution Time; WISE,
Worst-case Inputs from Symbolic Execution.

4.4. RQ2—Effectiveness of ESE

Based on the sensitivity analysis that we discussed above, we selected a balanced configuration
of ESE for studying the other research questions, by choosing, for each of the four parameters in
Figure 2, the value that occurs more times in the top four configurations in the figure. For the param-
eters popsize and mprob, for which each values occurs exactly one time, we arbitrarily selected
the second value of the corresponding scale. Table IV summarizes the resulting configuration.
Table V reports the results of our experiments with the selected configuration. For each program
listed in column ‘program’ and each input size listed in column ‘size’, the seven columns below
‘WCET test case execution cost’ report the execution cost, expressed as the number of executed
instructions, which we obtained by profiling the program with the worst case inputs identified either
manually (column ‘manual’) or with the techniques ESE, RAND, DFS, WISE, SPF-WCA and Evo-

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

21 of 25

Suite, respectively. For the experiments with the techniques ESE, RAND and EvoSuite, the data are
the average values across 10 runs, to control for the randomness in these techniques.

Investigating RQ2, we study the effectiveness and the significance ESE by comparing it with the
baseline strategies RAND and DFS. For inputs bounded at size 50, 75 and 100, ESE consistently
outperforms the baseline random strategy RAND, computes the same optimal WCET test case as
DEFS for the programs is_palindrome and bfs and consistently outperforms DFS for all other
programs. The dominance of ESE on RAND and DFS confirms that ESE successfully steers the
search towards the worst-case program path and successfully contrasts the path-explosion issues
incurred with the systematic strategy of DFS.

In summary

ESE successfully steers symbolic execution towards generating WCET test cases, significantly
outperforming both the baseline strategies of symbolically executing program paths in either depth-
first or random order.

4.5. RQ3—Comparison with WISE and SPF-WCA

With reference to RQ3, we compare ESE with the state-of-the-art techniques WISE and SPF-
WCA. Below, we elaborate on the comparison by restricting our attention to ESE and SPF-WCA,
since WISE is always equivalent to or worse than SPF-WCA in our experiments. The data in
Table V reveal the mutually complementary strengths of these techniques. ESE outperforms SPF-
WCA in the experiments with quicksort_jdk, kmp, memory_fill and dfs, is comparable
to (even though slightly better than) SPF-WCA for merge sort and is equivalent to SPF-WCA
foralternate_0, is_palindrome and bfs.

The experiments in which ESE outperforms SPF-WCA confirm the observations that we made
in Section 2 about (i) programs for which SPF-WCA cannot compute a conclusive guidance policy
(e.g., dfs and kmp) and thus falls back to the same effectiveness of DFS, and (ii) programs for
which the worst-case behaviour observed on small inputs does not generalize for large inputs (e.g.
memory_£il1 and quicksort_jdk).

For these programmes, SPF-WCA ends up with analyzing sets of programme paths that may not
include the worst-case path, while ESE suites better by sampling the target program scope directly.

For example, in the case of quicksort_jdk, the in-depth analysis of the bad results of
SPFWCA reveals that it is the expected consequence of the change of behaviour of the programme
with small or large arrays, respectively: The behaviour of the programme that WISE and SPF-WCA
observe in 30 min with arrays up to a maximum of seven items does not generalize when executing
the programme with arrays of size 10, 50, 75 and 100.

On the other side of the spectrum, merge_sort has an almost regular worst case, which mostly
consists of alternating decisions when merging the items of the sorted sublists. This type of worst-
case behaviour is similar to the one that we described in Section 2 with reference to the programme
alternate_0 and can be (at least partially) captured with a guidance policy in the same way as
SPF-WCA.

In general, both WISE and SPF-WCA assume the existence (and the availability) of a monotone
relation between inputs of increasing size and increasing worst-case execution costs. For the pro-
grammes considered in our experiments, which take inputs shaped as list and graph structures, it
is natural to identify this relation based on the size of the data structures, for example, devising a
guidance policy for merge_sort by considering the sorting of lists of small size and then using
that guidance policy to analyze the worst-case execution cost when sorting large lists. However, for
many practical programmes, which may take multiple inputs, shaped as various types of interwoven
data structures, satisfying this assumption may not be easy: Each different input may or not partici-
pate in the worst-case behaviour of the programme, and the definition of the size increment related

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

22 of 25 AQUINO ET AL.

to the combination of the participating inputs can be peculiar. ESE dismisses this requirement by
working directly on the target programme scope and can thus natively address this general case.

In summary

As expected, ESE outperforms WISE and SPF-WCA in programmes for which these tech-
niques cannot compute conclusive guidance policies, and those for which the worst-case behaviour
observed on small inputs does not generalize for large inputs.

4.6. RQ4 — Comparison with EvoSuite

We elaborate on research question RQ4 based on the comparison of the results of ESE and EvoSuite
in Table V. In our experiments, ESE outperforms EvoSuit for alternate_0, is_palindrome,
kmp and dfs, is equivalent to EvoSuit for memory_fi11 and bfs, and is comparable to (though
slightly worse) EvoSuit for merge_sort and quicksort_jdk.

EvoSuit yields the poorest results with i s_palindrome and kmp, where it does not identify the
optimal WCET test case in any experiment, not even in the experiments with inputs of Size 10. The
key observation in these experiments is that, for both these programmes, the worst-case programme
path depends on equality relations between distinct values of the respective input lists, and it is thus
very hard for EvoSuite to identify satisfying inputs by independently sampling the values of the
list items. These experiments provide evidence of the benefits of EvoSuite that explicitly represents
the relevant equalities in the path conditions of the candidate solutions, confirming that EvoSuite
is a better suited technique than purely dynamic search based testing techniques for a problem like
WCET testing, for which the solution is monotonic in the length of the programme paths. When
(as in the case of paths the depend on strict equality conditions) the possible input values unevenly
distribute across the classes of inputs that trigger distinct programme paths, it can be sometimes hard
to cover programme paths that are elicited by classes of inputs with low cardinality, for example, like
in is_palindrome where most input values lead to suboptimal programme paths and very few
specific inputs trigger the worst-case programme paths. Instead, the symbolically computed path
conditions specifically identify the distinct feasible programme paths, thus increasing the probability
of sampling the relevant ones.

EvoSuite works slightly better with alternate_0 and dfs and has optimal performance (like
ESE) with memory_£i1l1 and bfs. In these programmes, the worst-case values of the input list
items are mutually independent. This simplifies the problem to be solved with EvoSuite. Nonethe-
less, when we increase the size of the problems in alternate_0 and df s, the path condition-level
optimizations of ESE suite better than the input-level optimizations of EvoSuite for identifying
solutions to the strict equality constraints in these two programmes.

For merge_sort and quicksort_jdk, EvoSuite and ESE have very close performance, with
ESE performing slightly better than EvoSuite for quicksort_jdk, and EvoSuite performing
slightly better than ESE for merge_sort in the experiments with largest inputs. Since both these
programmes implement sorting algorithms, their programme paths depend on comparing the rela-
tive order of the inputs, but not on strict equality comparisons. Thus, on one hand, the experiments
with these two programmes indicate that the high efficiency of the purely dynamic analysis of Evo-
Suite pays well if the programme under test has limited dependencies on equality comparisons. On
the other hand, these results further strengthen the observation that we made in the experiments
with the other programmes, pinpointing in the handling of the equality comparisons the distinctive
strength of the path condition-level evolutionary operators of ESE: By reasoning on the path condi-
tions of the programme paths, the evolutionary operators of ESE result in effectively sampling the
classes of inputs (represented as path conditions) that trigger the execution of distinct programme
paths, more effectively than directly sampling the possible input values as in EvoSuite.

In summary
The comparison between the experimental results that we achieved with ESE and the version
of EvoSuite that we adapted with the WCET fitness function indicate that the path condition-level

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

23 of 25

evolutionary operators of ESE significantly contribute to the effectiveness of the ESE approach,
beyond just the merit of the WCET fitness function.

4.7. Threats and limitations

The goal of these experiments was primarily to provide empirical evidence of the implications of
the regular and irregular worst case phenomena in ESE and the competing techniques, but as the
main threat, we cannot claim that the considered programmes are representative of all the challenges
that may emerge when applying our technique to general purpose industrial scale programmes,
and thus our result may not generalize. A larger selection of benchmarks would be necessary to
systematically assess the absolute and mutual benefits of ESE, WISE and SPF-WCA. Moreover,
we need to further investigate to which extent the theoretical and practical limitations of symbolic
execution impact ESE, for example, constraints that the constraint solver cannot cope with, low-
level operations that can be hard to simulate symbolically and the possible mismatch between the
static counting of the traversed instructions and the actual execution cost of the programmes.

5. RELATED WORK

Many static WCET analyzers for hard real-time systems combine symbolic execution with timed
automata and static analysis to compute WCET estimations [1-7]. In the context of these techniques,
symbolic execution complements (mostly static) analysis procedures, assisting the pruning of infea-
sible execution paths that would jeopardize the precision of the estimations. Knoop et al. augment
the r-TuBound WCET analyzer by symbolically executing the identified worst path to determine
whether the path is infeasible; if so, they iterate the analyzer with refined constraints to find a dif-
ferent path [6]. Biere et al. use symbolic execution to enhance the ability of the analyzer to compute
loop bounds [5]. Kebbal end Sainrat rely on symbolic execution to automatically extract informa-
tion about the programme semantics that they used to tighten the WCET estimates [3]. In general,
these techniques pursue the goal of computing WCET estimations, but not the generation of WCET
test cases, and can hardly cope with general purpose programmes with large path spaces.

Our work is closely related to techniques that rely on symbolic execution to generate test data
for worst case and load testing, security exploit synthesis and structural code coverage [8, 9, 12,
22-27]. We have extensively commented on state of the art in WCET testing [8, 9] in Section 2,
and experimentally compared the existing techniques, WISE and Symbolic Path FinderWorst-Case
Analysis (SPF-WCA), with our approach in Section 4. Zhang et al., propose a technique for load
testing that iterates symbolic execution to explore increasingly longer programme paths, with a
greedy path selection heuristic that, at each iteration, continues to explore only the paths that yielded
the highest workload at the previous iteration [22]. Avgerinos et. al. use symbolic execution to
find working exploits for security vulnerabilities, using path selection heuristics based on domain
knowledge on the vulnerabilities [23]. In general, many symbolic-execution-based test generators
embed path selection heuristics that address structural code coverage [12, 16, 24-27]. The approach
discussed in this paper is the first to investigate an evolutive path selection heuristic for symbolic
execution, where a cost model guides the search. In the future, we aim to study if ESE can be
beneficial for other goals other than WCET testing.

The area of Search-Based Software Testing (SBST) encompasses techniques that use search-
based optimization algorithms for the generation of test data [14]. So far, a substantial research
effort in the area has targeted structural coverage [15, 28-35]. In particular, we briefly survey the
techniques that investigated combinations of SBST and symbolic execution [16, 36, 37]. Other
researchers exploit symbolic execution to optimize the evolutionary algorithms used in SBST
[38—41]. Xie et. al. and Baluda investigate search-based path selection strategies to steer symbolic
execution towards paths with higher chances to execute uncovered branches [42, 43]. None of these
previous SBST techniques targeted WCET testing so far, and none of them investigated a search
strategy based on combining the path conditions of the incrementally analyzed programme paths,
as we propose in this paper.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.
DOI: 10.1002/stvr

24 of 25 AQUINO ET AL.

6. CONCLUSIONS

In this paper, we presented a novel technique for WCET testing of software programmes. We pro-
vided compelling examples of the limitations of the state-of-the-art techniques based on guided
symbolic execution and proposed a novel technique that combines symbolic execution with an
evolutionary algorithm that steers the incremental analysis of increasingly worse programme paths.

The experiments presented in this paper support our hypothesis that there exists a class of
programmes for which WCET testing cannot be addressed with the guided symbolic execution
approach and indicate that our ESE technique provides a viable solution for WCET testing of these
programmes. The experiments on the sensitivity of ESE confirmed the importance the local search
phase of our algorithm, and the comparison with EvoSuite indicated the effectiveness of the evolu-
tionary operators that ESE defines based on symbolic execution with respect to traditional operators
that manipulate concrete inputs.

We believe that the benefits of ESE over guided symbolic execution generalize to practical
programmes, which may take multiple inputs, shaped as various complex data structures, each
impacting in its own specific way on the worst-case behaviour of the programme. ESE may concep-
tually address such programmes directly, while guided symbolic execution cannot. Currently, we are
porting ESE on a mature symbolic execution framework, that is, JBSE [44], to enable experiments
with ESE on more general programmes than the ones considered in this paper.

ACKNOWLEDGMENTS

This work has been partially supported by the GAUSS research project, funded by Ministero
dell’Istruzione, dell’ Universita e della Ricerca (MIUR) under the PRIN 2015 programme (Contract
2015KWREMX).

REFERENCES

1. Lundqvist T., Stenstrom P. An integrated path and timing analysis method based on cycle-level symbolic execution.
Real-Time Systems 1999; 17(2-3):183-207.
2. Stappert F., Altenbernd P. Complete worst-case execution time analysis of straight-line hard real-time programs.
Journal of Systems Architecture 2000; 46(4):339-355.
3. Kebbal D., Sainrat P. Combining symbolic execution and path enumeration in worst-case execution time analysis. In
International Workshop on Worst-Case Execution Time Analysis (WCET), Mueller F (ed.), 2006.
4. Benhamamouch B., Monsuez B., Védrine F. Computing WCET using symbolic execution. International Conference
on Verification and Evaluation of Computer and Communication Systems (VECoS) 2008:128—139.
5. Biere A., Knoop J., Kovics L, Zwirchmayr J. The auspicious couple: symbolic execution and WCET analysis.
International Workshop on Worst-Case Execution Time Analysis (WCET) 2013:53-63.
6. Knoop J., Kovacs L, Zwirchmayr J. WCET Squeezing: on-Demand feasibility refinement for proven precise WCET-
bounds. International Conference on Real-Time Networks and Systems (RTNS) 2013:161-170.
7. Luckow K. S., Thomsen B. Symbolic execution and timed automata model checking for timing analysis of Java
Real-Time Systems. EURASIP Journal on Embedded Systems 2015; 2015(1):2.
8. Burnim J., Juvekar S., Sen K. WISE automated test generation for worst-case complexity. IEEE/ACM International
Conference on Software Engineering (ICSE) 2009:463—-473.
9. Luckow K., Kersten R., Pasareanu C. Symbolic complexity analysis using context-preserving histories. /EEE
International Conference on Software Testing, Verification and Validation (ICST) 2017:58-68.
10. King J. C. Symbolic execution and program testing. Communications of the ACM 1976; 19(7):385-394.
11. Clarke L. A. A program testing system. ACM Annual Conference 1976:488-491.
12. Cadar C., Sen K. Symbolic execution for software testing: three decades later. Communications of the ACM 2013;
56(2):82-90.
13. Roper M. Computer aided software testing using genetic algorithms. International Software Quality Week (QW)
1997.
14. McMinn P. Search-based software test data generation a survey. Software Testing, Verification and Reliability 2004;
14(2):105-156.
15. Fraser G., Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering 2013; 39(2):276-291.
16. Braione P., Denaro G., Mattavelli A., Pezz¢ M. Combining symbolic execution and search-based testing for pro-
grams with complex heap inputs. ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)
2017:90-101.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:¢1719.
DOI: 10.1002/stvr

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

25 of 25

Panichella A., Kifetew FM., Tonella P. Automated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software Engineering 2018; 44(2):122—-158.

Aquino A., Denaro G., Salza P. Worst-case execution time testing via evolutionary symbolic execution. International
Symposium on Software Reliability Engineering (ISSRE) 2018:76-87.

De Moura L., Bjgrner N. Z3: an efficient SMT solver. International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS) 2008:337-340.

Saxena P., Akhawe D., Hanna S., Mao F., McCamant S., Song D. A symbolic execution framework for JavaScript.
IEEE Symposium on Security and Privacy (SP) 2010:513-528.

Padhye R., Sen K. Travioli: a dynamic analysis for detecting data-structure traversals. IEEE/ACM International
Conference on Software Engineering (ICSE) 2017:473—483.

Zhang P, Elbaum S., Dwyer M. B. Automatic generation of load tests. IEEE/ ACM International Conference on
Automated Software Engineering (ASE) 2011:43-52.

Avgerinos T., Cha S.K., Rebert A., Schwartz E.J., Woo M., Brumley D. Automatic exploit generation. Communica-
tions of the ACM 2014; 57(2):74-84.

Tillmann N., de Halleux J. Pex: white box test generation for.NET. International Conference on Tests and Proofs
(TAP) 2008:134-153.

Cadar C., Dunbar D., Engler D. KLEE: unassisted and automatic generation of high-coverage tests for complex
systems programs. Symposium on Operating Systems Design and Implementation (OSDI) 2008:209-224.

Burnim J., Sen K. Heuristics for scalable dynamic test generation. IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2008:443-446.

Braione P., Denaro G., Mattavelli A., Vivanti M., Muhammad A. Software testing with code-based test generators:
data and lessons learned from a case study with an industrial software component. Software Quality Journal 2014;
22(2):311-333.

Fraser G., Arcuri A., McMinn P. A memetic algorithm for whole test suite generation. Journal of Systems and
Software 2015; 103(C):311-327.

Wegener J., Baresel A., Sthamer H. Evolutionary test environment for automatic structural testing. Information and
Software Technology 2001; 43(14):841-854.

Fraser G., Zeller A. Mutation-driven generation of unit tests and oracles. IEEE Transactions on Software Engineering
2012; 38(2):278-292.

Vivanti M., Mis A., Gorla A., Fraser G. Search-based data-flow test generation. /EEE International Symposium on
Software Reliability Engineering (ISSRE) 2013:370-379.

Tonella P. Evolutionary testing of classes. ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA) 2004:119-128.

Walcott K.R., Soffa M.L., Kapthammer G.M., Roos R. S. Timeaware test suite prioritization. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA) 2006:1-12.

Colanzi T.E., Assuncdo W K G, Vergilio S.R., Pozo A. Integration test of classes and aspects with a multi-
evolutionary and coupling-based approach. International Symposium on Search Based Software Engineering (SSBSE)
2011:188-203.

Gross F., Fraser G., Zeller A. Search-based system testing: high coverage, no false alarms. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA) 2012:67-77.

Xie T., Marinov D., Schulte W., Notkin D. Symstra: a framework for generating object-oriented unit tests using
symbolic execution. International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS) 2005:365-381.

Inkumsah K., Xie T. Improving structural testing of object-oriented programs via integrating evolutionary testing and
symbolic execution. IEEE/ACM International Conference on Automated Software Engineering (ASE) 2008:297-306.
Baars A., Harman M., Hassoun Y., Lakhotia K., McMinn P, Tonella P., Vos T. Symbolic search-based testing.
IEEE/ACM International Conference on Automated Software Engineering (ASE) 2011:53-62.

Galeotti J.P,, Fraser G., Arcuri A. Improving search-based test suite generation with dynamic symbolic execution:
IEEE International Symposium on Software Reliability Engineering (ISSRE), 2013.

Malburg J., Fraser G. Combining search-based and constraint-based testing. IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2011:436-439.

Lakhotia K., Harman M., McMinn P. Handling dynamic data structures in search based testing. Genetic and
Evolutionary Computation Conference (GECCO) 2008:1759-1766.

Xie T., Tillmann N., de Halleux P., Schulte W. Fitness-guided path exploration in dynamic symbolic execution.
International Conference on Dependable Systems and Networks (DSN) 2009:359-368.

Baluda M. EvoSE: evolutionary symbolic execution. International Workshop on Automating Test Case Design,
Selection and Evaluation (A-TEST) 2015:16-19.

Braione P., Denaro G., Pezze¢ M. JBSE A symbolic executor for Java programs with complex heap input. ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) 2016:1018-1022.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2020;30:e1719.

DOI: 10.1002/stvr

	Facilitating program performance profiling via evolutionary symbolic execution
	Summary
	INTRODUCTION
	MOTIVATION
	EVOLUTIONARY SYMBOLIC EXECUTION
	Overview of the ESE algorithm
	Exploring and representing program paths
	Genetic operators
	Local search

	EXPERIMENTS
	Evolutionary symbolic execution prototype
	Experiments setting
	RQ1—Sensitivity of ESE parameters
	RQ2—Effectiveness of ESE
	RQ3—Comparison with WISE and SPF-WCA
	RQ4 – Comparison with EvoSuite
	Threats and limitations

	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

