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Abstract—Worst-case execution time testing amounts to con-
structing a test case triggering the worst-case execution time of
a program, and has many important applications to identify,
debug and fix performance bottlenecks and security holes of
programs. We propose a novel technique for worst-case execution
time testing combining symbolic execution and evolutionary
algorithms, which we call “Evolutionary Symbolic Execution”,
that (i) considers the set of the feasible program paths as the
search space, (ii) embraces the execution cost of the program
paths as the fitness function to pursue the worst path, (iii) exploits
symbolic execution with random path selection to collect an
initial set of feasible program paths, (iv) incrementally evolves by
steering symbolic execution to traverse new program paths that
comply with execution conditions combined and refined from the
currently collected program paths, and (v) periodically applies
local optimizations to the worst currently identified program path
to speed up the identification of the worst path. We report on a set
of initial experiments indicating that our technique succeeds in
generating good worst-case execution time test cases for programs
with which existing approaches cannot cope.

Index Terms—Symbolic Execution, Worst-Case Execution
Time, Genetic Algorithms, Software Engineering

I. INTRODUCTION

Worst-Case Execution Time (WCET) testing amounts to

constructing a test case that triggers the worst execution time

of a program, and has many important applications to identify,

debug and fix performance bottlenecks and security holes of

software programs. For example, WCET testing can reveal if

a program matches the theoretical worst-case computational

complexity of the algorithm that it implements, revealing a

performance bug if it does not. More in general, knowing a

WCET test case allows the developers to debug and profile

the WCET behavior of the program, to spot and possibly fix

performance issues or identify optimization opportunities. Also,

WCET testing can highlight vulnerabilities to inputs that an

adversary can exploit for denial of service attacks.

In this paper, we propose a WCET testing technique based

on an unprecedented combination of symbolic execution and

evolutionary algorithms, which we call Evolutionary Symbolic

Execution (ESE), that crucially improves on all previous WCET

testing techniques that rely only on symbolic execution.

Symbolic execution is a well-established program analysis

technique to compute the execution conditions of sets of

program paths [1], [2]. Symbolic execution computes the

execution conditions in the form of propositional formulas,

called “path conditions”, over symbols that represent the

possible values of the program inputs. Executing the program

with actual values that satisfy a path condition results in

executing through the corresponding path.

The information in the path conditions allows symbolic

execution to discriminate between feasible (executable) and

infeasible (not executable) program paths, based on whether

it is possible to derive either actual assignments of the inputs

that satisfy a path condition or a proof that the path condition

is indeed unsatisfiable, respectively. Thus, symbolic executors

integrate with constraint solvers that can automatically decide

the satisfiability of the path condition formulas [3], [4], [5].

At state of the art there exist many symbolic execution tools

that target a variety of programming languages and application

domains [6], [7], [8], [9], [10], [11], [12], [13].

Traditional techniques for WCET analysis of hard real-time

systems include steps based on symbolic execution to prune

infeasible execution paths, but do not generally address the

generation of WCET test cases [14], [15], [16], [17], [18], [19],

[20]. These techniques exploit symbolic execution on restricted

parts of the overall system, to tune higher lever static analysis

procedures. More recently, WISE [21] and SPF-WCA [22]

introduced WCET testing techniques that (i) exploit symbolic

execution to discriminate between the feasible and infeasible

execution paths of the program under test, (ii) identify the

worst (feasible) path based on a cost function, e.g., the amount

of executed instructions, measured during symbolic execution,

and (iii) synthesize a WCET test case by solving the path

condition of the worst identified program path.

However, since symbolic execution incurs unrealistic compu-

tational costs to exhaustively analyze large path spaces, which

is a common case for even simple programs, WISE and SPF-

WCA work in two phases: (i) they accomplish the exhaustive

symbolic execution of the program under test, but only in the

scope of a user-defined restriction of the program inputs, being

the considered restriction suitable for limiting the number of

explored paths to a practical amount; (ii) then, they extrapolate

the information of the worst feasible path observed with the

restricted inputs, to synthesize a path selection heuristic, called

a “guidance policy”, which they use to steer the symbolic

execution of the program in the target (unrestricted) scope. If

successful, the guidance policy allows them to identify the

worst-case path by visiting a small subset of the feasible paths.

In Section II, we exemplify some programs for which WISE

and SPF-WCA work well. In Section II, we provide examples
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of programs for which the worst-case path observed for the

restricted inputs does not generalize, or even exhibits a radically

different behavior with respect to the worst-case case of the

program in the target scope. If so, the approaches of WISE and

SPF-WCA results in either an ineffective guidance policy that

selects an unmanageable amount of paths or even a misleading

policy that may lead to reporting a wrong WCET test case.

The novel technique for WCET testing presented in this paper

is able to analyze the program under test directly in its target

scope, thus avoiding both the burden for the testers of having

to identify any suitable input restriction, and the issues due to

a possible mismatch between the behavior of the program with

restricted and unrestricted inputs, respectively. Our technique

embraces a meta-heuristic path selection strategy based on

a “memetic” algorithm. Memetic algorithms are evolutionary

algorithms that hybridize genetic and local search algorithms,

such that the candidate solutions identified with a genetic

algorithm can be improved with focused optimizations within

the local search algorithm.

In particular, our algorithm exploits the synergy between

symbolic execution, which contributes the ability to identify the

execution conditions that characterize feasible program paths,

and a memetic path selection heuristic, which contributes to

the ability of heuristically (not exhaustively) exploring huge

path spaces. The memetic heuristic is driven by a fitness

function that measures the execution cost of the program

paths and, in turn, include (i) a genetic algorithm that fosters

the combination of the execution conditions from the already

explored program paths, aiming to reveal sets of execution

conditions that correspond to incrementally worse program

paths, and (ii) a local search procedure, executed at regular

intervals, that attempts atomic changes to the current path

condition, aiming to further refine the decision sequences of

the worst program path identified so far.

The paper is organized as follows. Section II motivates our

research by exemplifying the existing techniques, WISE and

SPF-WCA, and their limitations on a set of sample programs.

Section III presents our novel technique for WCET testing in

detail. Section IV discusses a set of experiments that evaluate

our technique both in absolute terms and in comparison with

WISE and SPF-WCA. Section V acknowledges the related work

in the field. Finally, Section VI summarizes our conclusions

and outlines directions of further research.

II. MOTIVATION

This section discusses a set of examples that highlight the

limitations of the state-of-the-art WCET testing techniques,

thus motivating the new technique proposed in this paper.

The two phases symbolic execution approach that we

surveyed in the introduction was first proposed in the technique

WISE [21]. We illustrate WISE with reference to the program

is_palindrome in Listing 1 that inspects an input list to

answer whether it is palindromic. For the input lists of a fixed

size, a WCET test case amounts to executing the program with

a list that is indeed palindromic, thus causing the maximum

number of iterations of the loop in the program. To find

Listing 1
is_palindrome

1 """
2 Decides if the given list is a palindrome.
3
4 Worst case: a palindrome list.
5 """
6 def is_palindrome(l):
7 for i in range(len(l)):
8 if l[i] != l[len(l) − 1 − i)]:
9 return False
10 return True

a WCET test case for this program, WISE starts with the

exhaustive symbolic execution of the program in a restricted

input scope that suffices to limit the feasible program paths to a

manageable amount. The way to express the restriction tightly

depends on the characteristics of the inputs of the program

under analysis and must be thus indicated by a test analyst in

the general case. If the input is a list of primitive values, as

in the case of the program in Listing 1, WISE can work by

bounding the size of the input list to few items.

For the program in Listing 1, considering only lists with

5 items limits the number of possible execution paths to 3
feasible (and 3 infeasible) paths. The feasible paths correspond

to the executions in which the program exits the loop during

the 1st or the 2nd iteration, or completes all the 5 iterations,

respectively. Symbolic execution captures these paths with the

path conditions (i) α1! = α5, (ii) α1 = α5 ∧ α2! = α4, and

(iii) α1 = α5 ∧ α2 = α4, respectively, being α1..5 symbolic

values that represent the 5 items in the input list. The last of

these path conditions characterizes the palindromic lists, e.g.,

[1, 2, 0, 2, 1]. The infeasible paths correspond to the paths in

which the program would exit the loop during the 3rd, the

4th or the 5th iteration, which is impossible in all 3 cases

because the 3rd list item cannot be different from itself, and the

conditions to exit at the 4th, or the 5th iteration contrast with

the assumptions made at earlier iterations. Symbolic execution

identifies that these 3 paths are infeasible because they map to

unsatisfiable path conditions, for instance, the path condition

of the path that exits the loop at the 4th iteration is α1 =
α5 ∧ α2 = α4 ∧ α3 = α3 ∧ α4! = α2, in which the 2nd and

the 4th conditions are mutually contradictory.

For the program of Listing 1, WISE would essentially work

as follows. It symbolically executes the program with respect

to a small input list, e.g., with the input list bounded to 5 items

as above mentioned. Then, for each feasible path yielded by

symbolic execution, it measures the number of instructions

traversed in the path and selects the path that executes the

highest amount of instructions. For the lists with 5 items,

it obtains that the worst path is the one that completes 5
iterations of the loop in the program. Next, it observes that

symbolic execution consistently selected the false branch of

the if-statement inside the loop, and thus it infers that forcing

symbolic execution to select this branch consistently guides

the analysis throughout the worst path of the program. Indeed,

using this guidance policy, WISE can efficiently analyze the

program of Listing 1 for arbitrarily large input lists, because the
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Listing 2
alternate_0

1 """
2 Iterates an expensive task based on the values of the

list.
3
4 Worst case: a list that alternates zeros and non−zeros

values.
5 """
6 def alternate_0(l):
7 for i in range(len(l)):
8 if l[i] == 0:
9 check = 1 − (i % 2)
10 else:
11 check = i % 2
12
13 if check != 0:
14 execute_expensive_task()

guidance policy steers symbolic execution to explore only one

path, and exactly the worst path of the program. For instance,

considering input lists with 100 items, the above guidance

policy leads WISE to explore the single path whose path

condition is α1 = α100 ∧ α2 = α99 ∧ α3 = α98 ∧ · · · ∧ α50 =
α51, and then generates the WCET test case by solving this

condition to actual values.

The SPF-WCA approach [22] extends WISE, synthesizing

sophisticated guidance policies in which the decisions to make

at the relevant decision points must not be consistently the

same (as in the above example), but may vary depending on the

history of decisions made during symbolic execution. Listing 2

exemplifies the program alternate_0 for which SPF-WCA

improves on WISE. For this program, the WCET test cases

amount to executing the program with lists that contain zero and

non-zero numbers at even and odd locations, respectively, thus

making function execute_expensive_task() execute

at all iterations of the loop in the program. To execute the

worst case path of the program in Listing 2, symbolic execution

must proceed in strict alternation through the true and false
branches of the first if-statement inside the loop. In this case,

WISE would synthesize an ineffective guidance policy, since

it just observes that both decisions shall be allowed at that

if-statement, and this results in providing no actual guidance.

Instead, SPF-WCA is able to compute an effective policy that

guides symbolic execution to select the true branch if it selected

the false branch at the previous traversal of the if-statement, and

the vice-versa. SPF-WCA can be instantiated to use decision

histories of any size, but for this example, it suffices to inspect

only one previous decision.

In this paper, we question the general validity of the

fundamental assumption that underlies both WISE and SPF-

WCA, i.e., we question that the analysis of the program with

restricted inputs can always unveil a regular worst case behavior.

We argue that in the general case the worst program path can

either be irregular across increasingly large input bounds or

even correspond to different program behaviors for different

boundings. Below we provide examples of these observations.

Listing 3 shows the depth_first_search program for

which the branch sequences of the worst path cannot be

captured with WISE and SPF-WCA. The program implements

Listing 3
depth_first_search

1 """
2 Determines if the vertex "finish" is reachable from

the vertex "start" in the given graph.
3
4 Worst case: a fully connected directed graph, except

for the vertex "finish" that is reachable only from
the "start" vertex of which it is the last neighbur.

5 """
6 def depth_first_search(graph, start, finish):
7 visited = [start]
8
9 while len(visited) > 0:
10 current = visited.pop()
11
12 if current == finish:
13 return True
14
15 visited.append(current)
16
17 for neighbor in graph.neighbors(current):
18 if not neighbor in visited:
19 visited.append(neighbor)
20
21 return False

a depth-first visit to find if there is a path that connects two

vertexes “start” and “finish” in a graph. The worst case happens

with a directed graph in which all vertexes but finish are fully

interconnected, and the vertex finish is connected only to start
and listed as its last neighbor. A graph with this structure

requires the program to visit all the vertexes in the graph, and

the maximum amount of edges for each vertex, while requiring

to backtrack the entire worklist visited to find the wanted path.

For this program, in any input restriction in which the input

graph has a fixed amount of vertexes, the worst case graph

leads symbolic execution through a sequence of decisions such

that (i) the worst path includes both at least a true and at

least a false outcome for all decision points in the program,

thus making WISE be unable to identify an effective guidance

policy, and (ii) the decision history needed to identify the

right decision at each point of the sequence is a decision

history of different size for each considered input restriction,

which makes SPF-WCA be unable to identify a guidance

policy. For instance, with reference to graphs of 4 vertexes, the

worst case path traverses the first if-statement in the program

with the sequence of decisions 〈false, false, false, true〉, where

the first true decision happens after 3 false decisions, while

with reference to graphs of 5 vertexes the sequence should be

〈false, false, false, false, true〉, where the first true decision

happens after 4 false decisions.

Listing 4 shows the memory_fill program for which the

worst path cannot be observed in a suitable input restriction.

The program copies a list of inputs into a fixed size buffer

with 16 cells, aiming at copying the largest set of non-zero

values that fit in the buffer. The program handles two cases:

(i) if the amount of inputs is less than the size of the buffer,

the program optimizes its performance by making a straight

copy of all inputs; (ii) otherwise, it inspects the value of each

input, and copies only the largest fitting set of non-zero values.

The WCET test case of this program is an input larger than
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Listing 4
memory_fill

1 """
2 Copy non−zero values in a buffer of 16 cells.
3
4 Worst case: a list of non−zero values.
5 """
6 def memory_fill(l):
7 memory = [0] ∗ 16
8 free = 16
9
10 if len(l) <= free:
11 for i in range(len(l)):
12 memory[i] = l[i]
13 return
14
15 for i in range(len(l)):
16 if l[i] != 0:
17 free −= 1
18 if free >= 0:
19 memory[free] = l[i]

the buffer and comprised of non-zero values only since each

non-zero value makes the program execute the longest block

of instructions. Interestingly, this WCET test case reveals a

performance bug, since the program wastes time to scan inputs

beyond the last one that fits in the buffer. This turns out being

also a security vulnerability since an attacker might feed the

program with enormous inputs to cause a denial of service.

The worst path of the program showed in Listing 4 cannot

be observed when bounding the input list to less than 17 items,

since with these inputs the program executes only the part of

the algorithm that makes a straight copy of all inputs. Similarly,

a scope with 17 input items leads to 217 possible execution

paths, which cannot be exhaustively analyzed with symbolic

execution in reasonable time. Indeed, for this program, both

WISE and SPF-WCA would limit the restricted analysis to at

most 16 input items, thus failing to analyze the part of the

code that corresponds to the worst case path.

Another similar example is reported in the seminal paper

of WISE [21], in which the authors discuss a third-party

implementation of quicksort (taken from the Java Develop-

ment Kit (JDK) 1.5) that they considered as an experimental

subject. They notice that the JDK-1.5 quicksort included the

optimization of using a median-of-9 pivot when sorting arrays

with more than 40 items, and a median-of-3 pivot when sorting

smaller arrays. Thus, they downgraded the implementation to

always use a median-of-3 pivot, acknowledging that otherwise

the guidance policy computed in the small scope would be

inconsistent with the behavior of the program with more than

40 inputs.

The next section presents our technique for WCET testing

whose core novelty is to search for the worst case behavior of

a program by heuristically analyzing it directly in the target

scope, thus not suffering the above issues.

III. EVOLUTIONARY SYMBOLIC EXECUTION

This section presents our novel technique for WCET testing

that works by combining symbolic execution with an evolution-

ary path selection strategy based on a memetic search algorithm.

We refer to this technique as Evolutionary Symbolic Execution

Algorithm 1: The evolutionary symbolic execution algorithm

1 population ← RANDOMPATHSAMPLING(conf:popsize)
2 generations ← 0
3 while TERMINATIONCRITERION() do
4 parentpairs ← SELECTION(population, conf:popsize)
5 for parent1, parent2 in parentpairs do
6 child1, child2 ← CROSSOVER(parent1, parent2)
7 offspring ← offspring ∪ {child1} ∪ {child2}
8 population ← population ∪ offspring
9 elite ← ELITISM(population, conf:elitesize)

10 population ← elite ∪ SURVIVALS(population − elite)

11 generations ← generations + 1
12 if generations % conf:lsperiod = 0 then
13 worst ← WORSTINDIVIDUAL(population)
14 worst’ ← LOCALSEARCH(worst)
15 population ← population − {worst} ∪ {worst’}
16 return WORSTINDIVIDUAL(population)

(ESE). ESE considers the set of the feasible program paths as

the search space, through which it steers symbolic execution

to explore a sample of incrementally selected program paths,

up to ultimately identifying a program path that reveals the

worst case execution time of the program. Then, it generates

the WCET test case by exploiting the symbolic representation

of this path. The core of ESE is a memetic algorithm that

incrementally selects the program paths to explore during the

search, with the aim of identifying the WCET behavior as

quickly as possible.

A. Overview of the ESE Algorithm

Algorithm 1 outlines the work flow of our ESE technique

in pseudocode. The algorithm starts with generating an initial

set (referred to as population) of randomly selected feasible

paths (line 1). The details of the algorithm RANDOMSAM-

PLINGOFPATHS, which underlies this step, are presented in

Section III-B. In a nutshell, this step steers symbolic execution

with a random path selection strategy, stopping after visiting

a predefined amount of program paths. We refer to each

symbolically analyzed path as an “individual” of the current

population. An individual stores the path condition computed

for the corresponding path, and the counting of the instructions

traversed while symbolically executing that path. As a large

majority of techniques for WCET analysis [21], [22], we

assume that the amount of instructions that comprise a program

path is a good proxy of the execution time of the program

when executed along that path. In our search-based algorithm,

the function that associates the explored program paths, i.e.,

the individuals, with the corresponding amount of executed

instructions plays the role of the “fitness function” that the

algorithm aims to maximize.

Next, the algorithm continues with symbolically executing

additional program paths, building on the knowledge of the

path costs observed in the current population, to select program

paths that might improve on the fitness of the current ones.

Working in the style of genetic algorithms [23], we specify
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the path selection strategy that we use in this step in the form

of a crossover mechanism (lines 4–7) that exploits the path

conditions of (pairs of) already explored paths (selected as

the parents at line 4) to steer symbolic execution to traverse

new feasible program paths (the children at line 6) that might

improve on the fitness of the parents. The SELECTION at

line 4 corresponds to the classical selection operator of genetic

algorithms that picks random individuals from the current

population, with the probability of picking each individual

being proportional to its current fitness. Section III-C presents

the details of the algorithm CROSSOVER (line 6) that comprises

the core of the crossover mechanism. It consists in enforcing

symbolic execution to comply with subsets of execution condi-

tions selected and combined from the parents’ path conditions.

We build on the intuition that the execution conditions of

the parents may convey costly subpaths to propagate in the

children, while the children may still include other (possibly

newly explored) subpaths that are not constrained by those

execution conditions.

Then, our algorithm consolidates the results of the crossover

by shaping a new population that includes a small set of the

current fittest individuals (line 9) and a fitness-biased random

selection of the others (line 10), and iterates through this

process within a predefined timeout (line 3).

At regular intervals, i.e., when the number of iterations is

multiple of a predefined conf:lsperiod period value (line 12),

the algorithm accomplishes a local search, trying to further

optimize the worst program path computed so far (lines 13–15).

This step indeed classifies the algorithm as “memetic”, and

not simply as “genetic”. Section III-D presents the algorithm

LOCALSEARCH (line 14) in detail. It consists in a hill-climbing

strategy that incrementally negates a single random condition

out of the ones in the path condition of the current worst

individual, in the attempt to reveal suboptimal decisions that

may further worsen the execution cost when inverted. After

a fixed amount of attempts, it returns the worst individual

identified along the process, or the initial individual unchanged

if all attempts failed, which replaces the previous worst

individual thereon (line 15).

The algorithm relies on some parameters that must be

configured before invoking it. In Algorithm 1 we indicated

these parameters with the notation conf:〈parameter_name〉, e.g.,
the timeout at line 3, and the local search period at line 12.

Below, we continue to refer to this notation while explaining

the other algorithms in detail. Section IV-B summarizes all the

configuration parameters of the algorithm and their concrete

values in the context of our experiments.

B. Exploring and Representing Program Paths

Our search-based algorithm computes the initial population

of candidate solutions by exploring a random sampling of

feasible program paths with symbolic execution. Algorithm 2

and Algorithm 3 specify this computation in pseudocode.

Algorithm 2 initializes a population with npaths individuals

by iterating (Algorithm 2, line 2) as follows. It analyzes the

program under test with symbolic execution, to compute the

Algorithm 2: RANDOMPATHSAMPLING(npaths)

1 population ← ∅
2 for i ← 1 to npaths do
3 pc, instrs ← SYMBOLICEXECUTION(program)
4 individual ← INDIVIDUAL(pc, instrs)
5 population ← population ∪ {individual}
6 return population

Algorithm 3: SYMBOLICEXECUTION(program)

1 instrs ← 0
2 state ← INITIALSYMBOLICSTATECUTION(program)
3 while ¬ISENDSTATE(state) do
4 successors ← SYMBOLICEXEC(state)
5 state ← RANDOMSELECTION(successors)
6 instrs ← instrs + 1

7 pc ← PATHCONDITION(state)
8 return pc, instrs

path condition and the number of instructions of a randomly

chosen path (Algorithm 2, line 3), and then encodes these

results as an individual, i.e., a candidate solution, of the

search algorithm (Algorithm 2, line 4). The conjunctive

formula that comprises the path condition is the “chromosome”

representation of the individual, whereas the atomic constraints

represent the “genes”. The number of instructions in the

program path is the measurement of the fitness of the individual.

Algorithm 3 specifies the exploration of a randomly chosen

feasible program path with symbolic execution. It starts with

building an initial symbolic state in which the program

inputs are assigned to symbolic values (Algorithm 3, line 2),

and then iteratively computes the possible successor states

as in classic symbolic execution, i.e., by manipulating the

symbolic representation of the current state according to the

semantics of the current program statement, and updating the

program counter to point to the next statement to be executed

(Algorithm 3, line 4). A symbolic execution step may yield

either a single successor state, when executing non-branching

statements in the program, like the statements that correspond

to assignments of variables, or two successor states, when

executing branching statements, like the statements that evaluate

conditions at the decision points in the program. We refer to

the standard embodiment of symbolic execution that relies on

a constraint solver to incrementally check the feasibility of the

successor states, and thus generates only reachable successor

states. When the solver confirms more than a successor state,

our algorithm chooses a random state out of those and continues

the analysis on that state only (Algorithm 3, line 5).

This procedure guarantees that each run of symbolic execu-

tion according to Algorithm 3 explores a single program path,

which is feasible based on the outcomes of the constraint solver,

and which is randomly selected at each decision point where

the execution might proceed through multiple distinct feasible

paths. As by product, the procedure measures the execution

cost of the analyzed path as the number of steps executed

while symbolically analyzing the path (Algorithm 3, line 6).
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Algorithm 4: CROSSOVER(parent1, parent2)

1 pci ← PATHCONDITION(parenti), ∀ i ∈ {1, 2}
2 leni ← COUNTCONDITIONS(pci), ∀ i ∈ {1, 2}
3 cuti ← RANDOMINTEGEREXEC(1, leni), ∀ i ∈ {1, 2}
4 pre1 ← pc1[0 : cut1] ∧ pc2[cut2 : len2]
5 pre2 ← pc2[0 : cut2] ∧ pc1[cut1 : len1]

6 children ← ∅
7 for pre ∈ {pre1, pre2} do
8 if RANDOM() < conf:muteprob then
9 pre ← REMOVERANDOMCONDITIONS(pre)

10 pc, instrs ← SYMBOLICEXECUTION’(program, pre)
11 children ← children ∪ INDIVIDUAL(pc, instrs)

12 return children

Algorithm 5: SYMBOLICEXECUTION’(program, pre)

1 instrs ← 0
2 state ← INITIALSYMBOLICSTATECUTION(program)
3 while ¬ISENDSTATE(state) do
4 successors ← SYMBOLICEXEC(state)
5 successors ← PRUNEUNSATSTATES(successors, pre)
6 if successors = ∅ then
7 throw SymbolicExecutionException

8 state ← RANDOMSELECTION(successors)
9 instrs ← instrs + 1

10 pc ← PATHCONDITION(state)
11 return pc, instrs

C. Genetic Operators

We bootstrap our search-based algorithm with the random

sample of program paths collected as discussed in the previous

section, and then proceed with steering symbolic execution to

explore additional program paths, by alternating between global

and local search phases. The global search phase is a genetic

algorithm that exploits the information in the current population

of candidate solutions. The local search phase focuses on the

best currently identified solution only. This section describes

our genetic algorithm, while we present the algorithm of the

local search phase in the next section.

Our genetic algorithm fosters the exploration of program

paths that may probabilistically include and combine both

high-cost subpaths that were already observed in some current

individuals, and other (possibly new) randomly explored

subpaths of the program. The core of this computation is

done by the crossover operator of the genetic algorithm.

Algorithm 4 specifies the crossover operator in pseudocode.

The crossover works on pairs of individuals selected from

the current population, here denoted as the inputs parent1
and parent2. As we already commented earlier in this section

(Algorithm 1, line 4) the selection of parent1 and parent2 is

accomplished as a random pick from the current according to a

(non-uniform) distribution such that the individuals with higher

fitness are selected with higher probability (therefore more

often) than the ones with lower fitness. This type of selection

mechanism is standard in genetic algorithms, and suites our

algorithm with no particular adaptation, thus we do not discuss

it further. We remark only that our selection operator enforces

parent1 and parent2 to be different individuals of the current

population.

Our crossover fosters symbolic execution to explore (at most

2) additional program paths, and enforces these paths to comply

with partial sets of the execution conditions excerpted from

the path conditions of the two parents, parent1 and parent2,
thus possibly replicating subpaths of these individuals. The

algorithm (i) synthesizes two new conditions pre1 and pre2 by

combining the path conditions of the two parents (Algorithm 4,

lines 1–5), (ii) mutates each condition pre ∈ {pre1, pre2}
with some probability (lines 8–9), and (iii) exploits each

condition pre ∈ {pre1, pre2} with symbolic execution to collect

the offspring individuals that the crossover returns as result

(lines 10–11).

To synthesize the new conditions pre1 and pre2, we cut the

path conditions of the two parents at random cutpoints, and join

the first part of the path condition of parent1 with the second

part of the path condition of parent2 (Algorithm 4, lines 1–4),

and the vice-versa (Algorithm 4, line 5). In this phase, the

algorithm relies on the knowledge that symbolic execution

yields conjunctive path conditions, and thus regards the path

conditions simply as lists of conditions. Then, with predefined

probability conf:muteprob, we may mutate the new conditions

(both pre1 and pre2, either one, or none of them) by removing

some inner conditions chosen at random (Algorithm 4, lines 8–

9). The actual mutation algorithm (not shown) removes from a

minimum of a single condition up to a maximum of 10% of

the inner conditions. After each removal, it decides with even

probability either to stop or continue with removing a further

condition; it stops necessarily after removing the maximum

number of conditions.

Algorithm 5 specifies the symbolic exploration of a feasible

program path that complies with a set of conditions pre
synthesized in the crossover algorithm. The symbolic execution

algorithm mimics all steps of Algorithm 3 with the only

additional behavior of pruning the symbolic states that are

incompatible with the precondition pre (Algorithm 5, lines 5–

7). We rely on the constraint solver to decide whether the

path condition of a current symbolic state is satisfiable in

conjunction with pre, and prune the symbolic states for which

the solver returns an unsatisfiability verdict (Algorithm 5,

line 5). If all successor states happen to be incompatible with

pre (Algorithm 5, line 6), the symbolic execution algorithm

terminates with an exception (Algorithm 5, line 7) indicating

that the precondition prevents the execution of any feasible path

of the program. The crossover does not generate the individual

in this latter case – in Algorithm 4, for simplicity, we do not

show this exceptional behavior explicitly.

This procedure guarantees that each (unexceptional) run

of symbolic execution according to Algorithm 5 explores a

single feasible program path, which complies with subsets of

the execution conditions of the parent individuals, thus likely

contains subpaths that belong also to those individuals, and

which is randomly selected at any decision points with multiple

paths that are not constrained by the precondition pre.
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Algorithm 6: LOCALSEARCH(individual)

1 for attempt ← 1 to conf:lsattempts do
2 pre ← PATHCONDITION(individual)
3 pre ← INVERTRANDOMCONDITION(pre)
4 pc, instrs ← SYMBOLICEXECUTION’(program, pre)
5 if instrs > individual.fitness then
6 individual ← INDIVIDUAL(pc, instrs)

7 return individual

D. Local Search

At regular intervals, our algorithm accomplishes a local

search phase in which it tries to make small focused changes

to the individual that has the maximum cost in the current

population, trying to further optimize that candidate solution.

In this phase, the algorithm proceeds in the style of the

“hill climbing” algorithm, i.e., incrementally changing single

elements of the solution and accepting those changes that result

in better solutions. The changes consist in exploring program

paths that differ from the current one for the outcome at a

decision point.

Algorithm 6 specifies the local search algorithm in pseu-

docode. The input individual denotes the individual with

maximum cost in the current population at the beginning of

the local search. The algorithm accomplishes a fixed amount

of iterations (line 1) in which it inverts a condition chosen at

random out of the path condition of the current individual, i.e.,

it replaces that condition with its logical negation (lines 2–3).

Then, it computes a new individual, by exploiting the modified

path condition with symbolic execution in a similar fashion

as we explained for the crossover operator (line 4). If the

new individual has higher execution cost than the current one,

the local search continues by focusing on the new individual

(lines 5–6), since the new individual is closer to the optimal

solution than the previous one, and iterates to further optimize

this individual. Otherwise, the algorithm continues without

changing the current individual. The algorithm returns the

individual with the highest cost identified throughout this

process.

The intuition that underlies the local search phase is that,

when the global search computes some solution that is close

to the optimum, likely it is a program path that mimics the

worse program path except for a small set of branch decisions.

In this situation, the crossover is generally ineffective to

find the missing optimizations without altering other parts

of the path. Conversely, trying a punctual exploration of the

possible changes is more likely to succeed. The local search

is also effective to identify subpaths with regular behavior,

e.g., a subpath in which all decisions at an if statement must

regularly take the same branch (or alternated branches) for a

given amount of subsequent evaluations of that decision point.

Although the global search may succeed to identify a majority

of the needed decisions, the fully regular sequence may appear

like a singularity in the search space. The local search may

incrementally spot the suboptimal decisions, and fix them.

Table I
THE PROGRAMS CONSIDERED IN THE EXPERIMENTS.

Program Category Complexity

alternate_0 Sequence checking O(n)
is_palindrome Sequence checking O(n)
merge_sort Sequence sorting O(n logn)
quicksort_jdk Sequence sorting O(n2)
kmp Sequence search O(n)
memory_fill Sequence operation O(n)
dfs Graph search O(n2)
bfs Graph search O(n2)

IV. EXPERIMENTS

We implemented a prototype of ESE for Python programs

(ESEpy), and used it to investigate the effectiveness of ESE

with respect to a set of sample programs for inputs of increasing

size. This section discusses our experiments indicating that:

1) ESE effectively steers symbolic execution towards gener-
ating WCET test cases. We show that ESE significantly

outperforms both the baseline strategies of analyzing the

feasible program paths in depth-first or random order,

respectively.

2) ESE properly complements the state-of-the-art approaches
WISE and SPF-WCA. We show that these approaches

work well for programs where the worst-case behavior

generalizes with regularity for inputs of increasing size,

but are significantly worse than ESE in the many cases

in which there is no such regularity.

Below we introduce our prototype of ESE, and discuss the

setting and the results of our experiments.

A. Evolutionary Symbolic Execution Prototype

Our prototype ESEpy is implemented in Python, based on

a purposely designed symbolic executor for Python programs.

The symbolic executor relies on the Z3 constraint solver [3],

and works by instrumenting that inputs data of the program

under test, to make the Python interpreter handle the inputs

as symbolic values (similarly to the work of Saxena et al.

on symbolic execution of JavaScript programs [24]). It can

currently handle input data that consist of integers and bounded

collections of integers.

B. Experiment Setting

Our experiments challenge ESEpy to generate WCET test

cases for the sample programs in Table I. alternate_0,
is_palindrome, dfs, and memory_fill are the pro-

grams that we already discussed in Section II, merge_sort
and quicksort_jdk are the popular sorting algorithms

(in particular quicksort_jdk is the JDK-1.5 quicksort

algorithm that switches from a mid-array pivot for arrays with

less than 7 items, to a median-of-3 pivot and then a median-

of-9 pivot for larger arrays with less or more than 40 items,

respectively), kmp (Knuth-Morris-Pratt) scans a sequence while

searching for an occurrence of a given subsequence, bfs
(breadth-first search) searches in a graph in breath-first order.
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Table II
PARAMETERS OF ESE IN THE EXPERIMENTS.

Parameter Description Value

conf:timeout The time budget for the search (min) 60
conf:popsize The size of the population 50
conf:elitesize The individuals retained as elite 5
conf:muteprob The probability of mutation 0.2
conf:lsperiod The generations before local search 10
conf:lsattempts The changes during local search 25

We used ESEpy for WCET testing of these programs instan-

tiated with respect to input lists or graph adjacency matrices

that consist of 10, 50, 75 or 100 symbolic integers, respectively.

For kmp we fixed the length of the searched subsequence to

3 symbolic integers. In these experiments, ESEpy assigns the

parameters of the ESE algorithm as summarized in Table II.

For each program and input size, we evaluated ESE both

in absolute terms, and in relative terms, with respect to the

competing approaches at the state of the art. In absolute terms,

we compared the execution cost measured by profiling the

programs with (i) the worst case inputs identified with ESEpy

and (ii) manually identified worst case inputs. In relative terms,

we compared the worst case inputs computed with ESEpy

with the worst case inputs obtained with symbolic execution

equipped with either (i) the classical depth-first (DFS) or

(ii) random path selection strategies (RAND), or yet with

the guidance policies identified with either (iii) WISE [21] or

(iv) SPF-WCA [22] approaches, respectively.

To be fair, we implemented the four competing approaches

on top of our symbolic executor for Python. DFSpy makes

the symbolic executor visit the program paths in depth-first

order. RANDpy works according to the random path selection

strategy that we illustrated in Algorithm 3. WISEpy and

SPF-WCApy implement the algorithms of WISE and SPF-

WCA, respectively, whose core step is to train a guidance

policy for steering symbolic execution to identify the worst

case (recall Section II). WISEpy trains the guidance policy by

analyzing the target program with (initially unitary and then)

increasingly larger input bounds, until a training time budget.

It then selects the worst path identified for the largest bound

for which it successfully completes the exhaustive analysis

of the program, and maps this path to a guidance policy,

decision point −→ decisions: the guidance policy associates

the program decision points with the corresponding decisions

(none, true, false or both true and false) taken at least once

along that path. SPF-WCApy trains the guidance policy in a

similar way, but builds a finer-grained guidance policy specified

as 〈decision point, decision history〉 −→ decisions, for the

possible decision histories of a given length. SPF-WCApy

uses decision histories of length one.

We ran ESEpy , DFSpy , and RANDpy against each program

instance with a time budget of 60min. For WISEpy and

SPF-WCApy , we split the time budget in 2 tranches of 30min
each, for the training phase and the test generation phase,

respectively, thus allowing for guidance policies trained on

inputs of meaningful size, while still leaving adequate time

to exhaustively analyze the decision points that the guidance

policy does not constrain. Hereon, we omit the py subscript

when referring to the prototypes.

C. Results

Table III reports the results of our experiments. For each

program listed in column “program” and each input size listed

in column “size”, the six columns “WCET test case execution

cost” report the execution cost, expressed as the number of

executed instructions, which we obtained by profiling the

program with the worst case inputs identified either manually

(column “manual”) or with the techniques ESE, RAND, DFS,

WISE and SPF-WCA, respectively. The five columns Analysis
time report the time spent by the techniques to identify the

respective worst case inputs: It is the time that a technique

took to identify a test input that reproduces the same execution

cost as the manual test case, or the entire analysis budget

(60min) if only suboptimal worst inputs were identified. For

the experiments with the techniques, ESE and RAND the

data are the average values across 10 runs, to control for the

randomness in these techniques.

With inputs bounded at size 10, all techniques successfully

compute the WCET test case efficiently for all programs, the

only exception being quicksort_jdk. For quicksort_-
jdk we observe that: (i) ESE is the only technique that

identifies the WCET test case; (ii) the systematic DFS strategy

fails to visit the worst-case path of this program in 60min;
(iii) both WISE and SPF-WCA synthesize ineffective guidance

policies. The analysis of this latter finding reveals that it is the

expected consequence of the change of behavior of the program

with arrays smaller or greater than 7 items, respectively: the

behavior of the program that WISE and SPF-WCA observe

with inputs of small size (less than 7 items) does not generalize

with inputs of size 10.
We study the effectiveness and the significance ESE by

comparing it with the baseline strategies DFS and RAND. For

inputs bounded at size 50, 75 and 100, ESE computes the

same optimal WCET test case as DFS for the programs is_-
palindrome and bfs, and consistently outperforms DFS for

all other programs. The dominance of ESE on DFS confirms

that ESE successfully steers the search towards the worst-case

program path, and successfully contrasts the path-explosion

issues incurred with the systematic strategy of DFS.

ESE consistently outperforms the baseline random strategy

RAND, except for the of experiments merge_sort and

quicksort_jdk, in which ESE and RAND both compute

comparable sub-optimal worst inputs. The experiments in

which ESE outperforms RAND indicate the significance of the

memetic algorithm ESE with respect to relying on a purely

random path selection strategy.

We further inspected the results of merge_sort and

quicksort_jdk in the cases in which ESE does not

significantly differ from RAND. We found that, when these

programs execute for large arrays, the length of their execution

paths hampers ESE from completing the generation of the
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Table III
RESULTS OBTAINED WITH ESE AND THE COMPETING TECHNIQUES FOR THE SUBJECT PROGRAMS FOR DIFFERENT SIZE OF THE INPUTS.

Program Size
WCET test case execution cost (#instructions) Analysis time (min)

Manual ESE RAND DFS WISE SPF-WCA ESE RAND DFS WISE SPF-WCA

alternate_0 10 61 61 61 61 61 61 < 1 60 < 1 < 1 < 1
50 301 301 277 269 267 301 13 60 60 60 30
75 451 451 413 393 391 451 11 60 60 60 30

100 601 601 543 517 517 601 31 60 60 60 30

is_palindrome 10 22 22 22 22 22 22 < 1 60 < 1 < 1 < 1
50 102 102 37 102 102 102 < 1 60 < 1 30 30
75 152 152 37 152 152 152 7 60 < 1 30 30

100 202 202 37 202 202 202 2 60 < 1 30 30

merge_sort 10 279 279 279 277 276 279 1 60 60 60 < 1
50 2019 2005 2003 1939 1939 2008 20 60 60 60 1
75 3249 3217 3218 3108 3108 3242 8 60 60 60 4

100 4549 4495 4501 4341 4341 4527 44 60 60 60 7

quicksort_jdk 10 348 348 302 248 248 296 20 60 60 60 60
50 1665 1298 1232 548 512 562 38 60 60 60 60
75 2528 1777 1750 673 635 685 48 60 60 60 60

100 3666 2204 2252 798 764 846 24 60 60 60 60

kmp 10 83 83 80 83 83 83 1 60 26 43 22
50 363 334 306 306 306 306 29 60 60 60 60
75 538 478 444 442 442 442 53 60 60 60 60

100 713 606 587 581 578 578 56 60 60 60 60

memory_fill 10 25 25 25 25 25 25 < 1 60 < 1 < 1 < 1
50 222 222 212 188 186 186 4 60 60 60 60
75 322 322 301 263 261 261 10 60 60 60 60

100 422 422 390 336 334 334 21 60 60 60 60

dfs 10 18 18 18 18 18 18 < 1 60 < 1 < 1 < 1
50 94 94 82 78 78 85 1 60 60 60 60
75 156 156 122 116 116 116 10 60 60 60 60

100 193 193 143 133 133 138 7 60 60 60 60

bfs 10 26 26 26 26 26 26 < 1 60 < 1 < 1 < 1
50 114 114 102 114 114 114 1 60 < 1 30 30
75 182 182 146 182 182 182 21 60 < 1 30 30

100 222 222 176 222 222 222 6 60 < 1 30 30

initial random population in 60min, and thus ESE indeed falls

back to behave exactly as RAND, confirming the observed

data. This is mostly a weakness of the current prototype that

performs badly to symbolically execute program paths with

large amounts of instructions and branches. Nevertheless, these

data pinpoint an intrinsic limitation of ESE, which may require

long time to analyze programs with very high WCET figures. In

the future, we aim to port ESE on a mature symbolic executor,

and evaluate it with respect to a larger selection of programs

and test budgets, to quantify the extent of this issue.

Finally, we compare ESE with the state-of-the-art techniques

WISE and SPF-WCA. In particular, we elaborate on the

comparison by restricting our attention to ESE and SPF-WCA,

since WISE is always equivalent to or worse than SPF-WCA in

our experiments. The data in Section IV-C reveal the mutually

complementary strengths of these techniques. ESE outperforms

SPF-WCA in the experiments with quicksort_jdk, kmp,
memory_fill and dfs. It is equivalent to SPF-WCA for

alternate_0, is_palindrome and bfs, and worse than

SPF-WCA for merge_sort.

The experiments in which ESE outperforms SPF-WCA

confirm the observations that we made in Section II about

(i) programs for which SPF-WCA cannot compute a conclusive

guidance policy (e.g., dfs and kmp) and thus falls back

to the same effectiveness of DFS, and (ii) programs for

which the worst-case behavior observed on small inputs does

not generalise for large inputs (e.g., memory_fill and

quicksort_jdk). For these programs, SPF-WCA ends up

with analyzing sets of program paths that may not include the

worst-case path, while ESE suites better by sampling the target

program scope directly.

On the other side of the spectrum, merge_sort has a

regular worst case, which consists of alternating decisions

when merging the items of the sorted sublists. This type of

worst-case behavior is similar to the one that we described in

Section II with reference to the program alternate_0, and
can be efficiently captured with a guidance policy in the same

way as SPF-WCA, while the length of the execution paths of

merge_sort challenges ESE as we commented above.

In general, both WISE and SPF-WCA assume the existence

(and the availability) of a monotone relation between inputs of

increasing size and increasing worst-case execution costs. For

the programs considered in our experiments, which take inputs

shaped as list and graph structures, it is natural to identify this

relation based on the size of the data structures, e.g., devising a

guidance policy for merge_sort by considering the sorting

of lists of small size, and then using that guidance policy

to analyze the worst-case execution cost when sorting large
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lists. However, for many practical programs, which may take

multiple inputs, shaped as various types of interwoven data

structures, satisfying this assumption may not be easy: each

different input may or not participate in the worst-case behavior

of the program, and the definition of the size increment related

to the combination of the participating inputs can be peculiar.

ESE dismisses this requirement by working directly on the

target program scope, and can thus natively address this general

case.

D. Threats and Limitations

The goal of these experiments was primarily to provide

empirical evidence of the implications of the regular and

irregular worst case phenomena in both ESE and the competing

techniques, but, as the main threat, we cannot claim that the

considered programs are representative of all the challenges

that may emerge when applying our technique to general

purpose industrial scale programs, and thus our result may

not generalize. A larger selection of benchmarks is still needed

to systematically assess the absolute and mutual benefits of

ESE, WISE and SPF-WCA. Moreover, we are aware that ESE

is intrinsically bound to the theoretical and practical limitations

of symbolic execution with constraints that the constraint solver

cannot cope with, low level (possibly unsafe) operations that

can be hard to simulate symbolically, and the possible mismatch

between the static counting of the traversed instructions and

the actual execution time of the program.

V. RELATED WORK

Many static WCET analyzers for hard real-time systems

combine symbolic execution with timed automata and static

analysis to compute WCET estimations [14], [15], [16], [17],

[18], [19], [20]. In the context of these techniques, symbolic

execution complements (mostly static) analysis procedures,

assisting the pruning of infeasible execution paths that would

jeopardize the precision of the estimations. Knoop et al.

augment the r-TuBound WCET analyzer by symbolically

executing the identified worst path to determine whether the

path is infeasible; if so, they iterate the analyzer with refined

constraints to find a different path [19]. Biere et al. use

symbolic execution to enhance the ability of the analyzer

to compute loop bounds [18]. Kebbal end Sainrat rely on

symbolic execution to automatically extract information about

the program semantics that they used to tighten the WCET

estimates [16]. In general, these techniques pursue the goal

of computing WCET estimations, but not the generation of

WCET test cases, and can hardly cope with general purpose

programs with large path spaces.

Our work is closely related to techniques that rely on

symbolic execution to generate test data for worst case and

load testing, security exploit synthesis and structural code

coverage [25], [21], [22], [26], [9], [8], [27], [13], [12]. We

have extensively commented on state of the art in WCET

testing [21], [22] in Section II, and experimentally compared the

existing techniques, WISE and SPF-WCA, with our approach

in Section IV. Zhang et al. propose a technique for load testing

iterating symbolic execution to explore increasingly longer

program paths, with a greedy path selection heuristic that, at

each iteration, continues to explore only the paths that yielded

the highest workload at the previous iteration [25]. Avgerinos

et al. use symbolic execution to find working exploits for

security vulnerabilities, using path selection heuristics based

on domain knowledge on the vulnerabilities [26]. In general,

many symbolic-execution-based test generators embeds path

selection heuristics that address structural code coverage [9],

[8], [27], [13], [28], [12]. The approach discussed in this paper

is the first to investigate an evolutive path selection heuristic

for symbolic execution, where a cost model guides the search.

In the future, we aim to study if ESE can be beneficial for

other goals other than WCET testing.

The area of Search-Based Software Testing (SBST) encom-

passes techniques that use search-based optimization algorithms

for the generation of test data [29]. So far a substantial SBST

research effort has targeted structural coverage [30], [31], [32],

[33], [34], [35], [36], [37], [38]. In particular, we briefly survey

the techniques that investigated combinations of SBST and

symbolic execution [39], [40], [28]. Other researchers exploit

symbolic execution to optimize the evolutionary algorithms

used in SBST [41], [42], [43], [44]. Xie et al. and Baluda

investigate search-based path selection strategies to steer

symbolic execution towards paths with higher chances to

execute uncovered branches [45], [46]. None of these previous

SBST techniques targeted WCET testing so far, and none of

them investigated a search strategy based on combining the

path conditions of the incrementally analyzed program paths,

as we propose in this paper.

VI. CONCLUSIONS

In this paper, we presented a novel technique for Worst-

Case Execution Time (WCET) testing of software programs.

We provided compelling examples of the limitations of the

state-of-the-art techniques based on guided symbolic execution,

and moved on by proposing a search-based approach that

combines symbolic execution with a memetic algorithm that

steers the incremental analysis of increasingly worse program

paths. In fact, the experiments presented in this paper support

our hypothesis that there exists a class of programs for which

WCET testing cannot be addressed with the guided symbolic

execution approach, and indicate preliminary evidence that our

Evolutionary Symbolic Execution (ESE) technique provides a

viable solution for WCET testing of these programs.

We believe that the benefits of ESE over guided symbolic

execution generalize to practical programs, which may take

multiple inputs, shaped as various complex data structures, each

impacting in its own specific way on the worst-case behavior

of the program. ESE may conceptually address such programs

directly, while guided symbolic execution cannot. Currently,

we are porting ESE on a mature symbolic execution framework,

i.e., JBSE [47], to enable experiments with ESE on more and

more general programs than the ones considered in this paper.
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