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ABSTRACT
Researchers have been highly active to investigate the classical
machine learning workflow and integrate best practices from the
software engineering lifecycle. However, deep learning exhibits de-
viations that are not yet covered in this conceptual development pro-
cess. This includes the requirement of dedicated hardware, dispens-
able feature engineering, extensive hyperparameter optimization,
large-scale data management, and model compression to reduce
size and inference latency. Individual problems of deep learning are
under thorough examination, and numerous concepts and imple-
mentations have gained traction. Unfortunately, the complete end-
to-end development process still remains unspecified. In this paper,
we define a detailed deep learning workflow that incorporates the
aforementioned characteristics on the baseline of the classical ma-
chine learning workflow.We further transferred the conceptual idea
into practice by building a prototypic deep learning system using
some of the latest technologies on the market. To examine the fea-
sibility of the workflow, two use cases are applied to the prototype.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement.

KEYWORDS
Deep learning, machine learning, continuous integration, software
maintenance and evolution

1 INTRODUCTION
The traditional software engineering lifecycle is usually maintained
through continuous integration (CI) and continuous delivery (CD)
to enable planning, development, and deployment of a software
artifact. Moreover, DevOps, which stands for development and oper-
ations, has manifested as a practice (and even as a culture) to merge
continuous lifecycle management into a single set of processes.
Although many software engineering principles can be transferred
to machine learning (ML) development, various new challenges
have to be solved [24]. In comparison, ML projects exhibit many
critical differences. For example, development is data-centric in-
stead of code-centric, individual modules are hard to isolate, and the
project team is more diverse in terms of the required skill-set [5].
Maintenance is more difficult and costly than development, as a
model needs to be continuously improved and adapted to a chang-
ing environment [38]. This leads to more frequent iterations over
the workflow compared to classical software engineering. Due to
the non-deterministic behavior, ML becomes a highly experimental
process, which brings up the need for reproducibility [46].

In general, ML lifecycles require sophisticated pipelines, which
facilitate data management, training, deployment, and model in-
tegration into the corresponding product. A previous case study
at Microsoft [5] was conducted to describe the current concept
of ML development and proposed an abstract workflow reaching
from model requirements up to model monitoring in production.
Principally, a workflow consists of an ordered sequence of activi-
ties required to achieve one or multiple goals [42]. An activity is
defined as a task contributing to the defined objective, which can
be performed either automatically or manually by a determined
individual. Regarding information technology, a workflow provides
systematic organization and reproducibility to the development
process, while reducing costs and increasing productivity [6].

In the context of deep learning (DL), there is still a lack of guid-
ance when it comes to integrating it into the software development
process. Such a workflow may deviate from the one proposed by
Microsoft [5] for multiple reasons: (1) while conventional ML is
based on manual feature engineering, DL is based on an end-to-
end approach, i.e., features are learned automatically [26]; (2) a
large amount of high-quality data is required to accurately learn
data representations, which introduces the need for scalable data
management pipelines; (3) as neural networks (NNs) are computa-
tionally intensive, specialized hardware is required. This includes
the use of graphics processing units (GPUs) for parallelization and
distributed training [2]; (4) DL requires the configuration of numer-
ous hyperparameters (HPs), which need to be optimized; (5) trained
NNs tend to be large and resource-intensive, introducing the need
for model compression, e.g., pruning and quantization, low-rank
factorization, convolutional filters, or knowledge distillation [9].

Several of these critical aspects of DL have been addressed in-
dependently in past research. For instance, advanced algorithms
have been proposed to accelerate the process of finding the optimal
parameters, and new platforms have been introduced to make GPU
training more accessible to researchers and practitioners [20, 30].
However, the concepts and technologies presented are still relatively
new and not yet fully mature [18]. Additionally, these individual
solutions have not yet been assembled to an end-to-end develop-
ment process for DL. A conceptual representation of the complete
workflow and a corresponding implementation remains undefined.

To overcome the above-stated knowledge gap, this paper aims at
investigating the current development workflow of DL in the con-
text ofML lifecycle management. The goal is to specify best-practice
guidelines from model development to deployment and execution,
i.e., bringing DLmodels into production. Therefore, lifecycle critical
differences to conventional ML are collected and integrated into an
extended workflow for the DL lifecycle. Additionally, a prototype is
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implemented to demonstrate the practicability of the defined work-
flow. Overall, this paper summarizes the current state of research
focused on the DL workflow and investigates its applicability in
practice. Then, we demonstrate that our abstract definition of the
workflow can be utilized in common DL applications. The technical
instructions on the prototype and source code for each of the use
cases are published at the address https://github.com/janousy/CDL.

This paper is organized as follows. Section 2 describes the correlated
research. We derive the abstract DL workflow in Section 3, using
the collected particularities of DL. This abstract definition is then
implemented in a minimum viable prototype in Section 4, where we
select a set of open source technologies to facilitate end-to-end DL.
The usage of our prototype and consequently the applicability of
our abstract workflow is then shown through two distinct use cases
in Section 5, based on a text classification and image processing
problem. Our findings are ultimately concluded in Section 6.

2 RELATEDWORK
While algorithms and frameworks to build ML models evolved
quickly, other stages of the workflow have been neglected for a
long time. However, to integrate ML into the current software ap-
plications, a need for a conceptual development process emerged.
In this section, we describe the work related to our research.

Machine learning workflow. Amershi et al. [5] investigated the de-
velopment of ML applications at Microsoft. Through a case study,
a high-level concept of the ML workflow composed of nine steps
was deduced. Furthermore, they highlighted the current challenges
imposed during the ML development and introduced a model to
measure the ML process maturity.

Later, Salama et al. [37] took the ML workflow a step further.
From a more practical perspective, they presented a conceptual
representation of a fully integrated ML system targeted towards
continuous adaption to the business environment. Within their
work, it is illustrated what artifacts are produced during the work-
flow and how data is moved and transformed between stages.

Compatibly, Garcia et al. [13] argue that a crucial piece currently
missing in the ML workflow was the context. Unstructured and off-
hand transitions between stages, and consequently between roles,
could impair productivity and reproducibility. Therefore, artifacts
produced by an individual role should not appear as a black-box
to other team members.

Furthermore, within the work of Haakman et al. [18], it is argued
that several steps within the ML lifecycle had been neglected up
to now. The authors interviewed 17 ML practitioners at ING, a
company which operates in the fintech industry. These interviews
revealed that many existing workflow models do not compromise
crucial steps such as data collection, feasibility study, documenta-
tion, risk assessment, model evaluation and monitoring. They stress
that the ML development process should not only focus on algo-
rithms, but the complete lifecycle. Additionally, it is stated that the
existing tools for ML were not mature enough. Many practitioners
would still rely on manual solutions, despite the existence of au-
tomating technologies. Indeed, there is a broad set of tools available
on the market, with many still being in their early development
phases [28, 43]. Moreover, very few specifically target DL.

Deep learning lifecycle.Miao et al. [26] addressed the issue of manag-
ing models and their corresponding artifacts. They built a lifecycle
management system for versioning models and a domain-specific
language to query created DL models. Thereby, users can explore
and compare hyperparameter tuning experiments using external
frameworks and publish models.

Instead, Zhang et al. [48] conducted an empirical study con-
cerning common challenges within DL development. By collecting
questions and answers on Stack Overflow and building a classifi-
cation model, they concluded five categories of common issues:
application programming interface (API) misuse, incorrect hyper-
parameter selection, GPU computation, static graph computation
and limited debugging and profiling support. It is further stated
that the current tool chain was not fully mature.

In summary, we argue that no investigation has yet been conducted
on the complete workflow specifically for DL. Most research focuses
on either a high-level abstraction of classical ML or the implemen-
tation of specific stages of the DL workflow.

3 ADEEP LEARNINGWORKFLOW
In this paper, we want to deduce the workflow required to perform
end-to-end DL and demonstrate the usage of the workflow through
a minimum viable prototype. Therefore, this section outlines the
abstract DL workflow that complies with the requirements listed in
Section 1. First, we give a high-level overview of the components
and roles required. Then, we provide a more detailed description
of all activities and interactions.

3.1 High Level Overview
We describe the DL workflow as a flow chart, which defines the
order of all activities and the corresponding roles to take respon-
sibility. Furthermore, the flow chart demonstrates what data and
operations may be involved at each step. The complete overview
flow chart is visualized in Figure 1. It is important to mention that
some steps described in this abstract workflow can be optional. We
define the responsibility based on the general definition of a role
in a data science team.

Within the workflow, we distinguish between workflow steps and
persistence entities, which store data produced by a workflow step,
once an actor performed an action. We define the following types
of persistence entities:

Code Repository stores source codewithin version control and allows
sharing.

ML Data holds versioned testing and training data prepared by a
Data Engineer, including the corresponding metadata and labels.

Transformation Registry stores preprocessed data specific to a model,
produced by a Data Scientist for faster and more convenient ac-
cess.

Experiment Registry tracks configuration, metrics, and results from
an experiment conducted by a Data Scientist.

Model Registry holds model artifacts of all models registered. This
includes model definition (source code), configuration (HPs,
environment, etc.), metadata (version, creator, time, etc.), de-
pendencies (e.g., software packages, files), andmost importantly
the serialized model, i.e., the trained weights in binary format.
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Figure 1: High-level overview of the DLworkflow.

Scoring Data stores prediction requests and results for analysis and
monitoring.

Our workflow initially only allows one starting point, namely
the Project Start. Moreover, there is no point of termination as DL,
as well as classical ML, is a cyclic process due to continuous model
improvements and adaptions to a possibly changing environment.
Upon further iterations of the lifecycle, various roles have the op-
tion to step in at almost any stage of the workflow, either due to
feedback loops or individual initiatives.

At the beginning of every DL project, the requirements need to be
defined. This is usually an interdisciplinary activity, involving busi-
ness, research, and engineering [25]. After coming to an agreement,
i.e., Define Project Requirements, a DevOps Engineer is responsible for the
Initial Setup. They introduce and maintain tools, methodologies and
processes for the team to support development, deployment, and
monitoring of ML models [36]. This includes the version-controlled
Code Repository and other technical infrastructure. The Code Reposi-
tory represents a central location to store, version, and share source
code, so that the complete workflow remains reproducible. Once
the setup is complete, other team members can start with their
implementations.

Figure 2: Definition of the abstract data pipeline.

Theoretically, the DL workflow comprehends three fundamen-
tal pipelines, namely the Data Pipeline, Model Pipeline, and Deployment
Pipeline, which are explicitly discussed in their respective sections.
All pipelines share the requirement of high performance comput-
ing (HPC) Requests, involve a subset of roles, and interact with
the defined persistence entities. These pipelines are not necessarily
tied to a specific order on a linear timeline and can be executed
independently. Nevertheless, the objective is to derive to a model
in production. Once a model is deployed for inference, the final
step of a workflow iteration, the Model Maintenance, is determining
when and where to re-enter the workflow. This can occur at various
stages, illustrated by feedback loops on the flow chart.

3.2 Data Pipeline
The data pipeline, displayed as a flow chart in Figure 2, is the funda-
mental element of the DL workflow, as a DL model directly depends
on the supplied data [29]. There are essentially two roles present
within the data pipeline: the Data Engineer and the Data Labeler. A Data
Engineer’s responsibility is to construct, acquire, prepare, and store
data securely [22]. A Data Labeler, on the other hand. provides an
accurate ground-truth for supervised or semi-supervised learning.
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The first step in the data pipeline, i.e., Data Collection, is defining
the external sources for the data. If the test and training sets do not
have different origins, the data engineer divides the collected data in
a reproducible manner at the subsequent step of Data Splitting. This
step may not be required for further iterations if the two datasets
are updated independently. Once the sources for the training and
test data are defined, the Data Ingestion step is targeted towards load-
ing the external data into a suitable storage option, illustrated as ML
Data in Figure 2. Data Versioning is indispensable and critical for data
lineage [22], and thus performed directly after Data Ingestion, presum-
ably in an automated fashion. Afterwards, the Data Engineer defines
how the ingested data is to be cleaned and validated, before deciding
whether the amount and quality of the data is sufficient for training
a DL model. If this is not the case, the data engineer returns to the
step of Data Collection. Otherwise, the prepared datasets are approved
and released for Data Labeling, by the internal or external Data Labeler.

The datasets generated by the data pipeline are required to be
reproducible. Thus, not only the datasets themselves require ver-
sioning, but also the process that produced these datasets. The Data
Engineer thus commits the definitions of all steps performed within
the data pipeline to the version controlled Code Repository, initially
set up by the DevOps Engineer. On further iterations of the DL life-
cycle, when there is already a model available, one can optionally
trigger the execution of Model Training to analyze the performance
with the new or updated dataset as a form of Continuous Integration.

Whenworking with large and complex data, various steps within
the data pipeline such as Data Ingestion, Data Cleaning, and Data Vali-
dation are resource demanding. Thus, a Data Engineer should request
computing resources on-demand within the steps of the pipeline.

3.3 Model Pipeline
Similar to theData Pipeline, theModel Pipeline abstracted in the overview
flow chart is defined in detail in Figure 3. There are two main actors
within the model pipeline: the Data Scientist and the Model Validator.
The Data Scientist’s aim is to analyze and explore data, extract fea-
tures, and prototype models in an experimental manner [7]. The
Model Validator takes responsibility for the project and ensures that
the business requirements are fulfilled [12]. Analogously to the
Data Pipeline, a Data Scientist can request HPC Resources on-demand
throughout all steps of the Model Pipeline.

Initially, an experiment is created by either modifying an exist-
ing version of the Code Repository or creating an experiment from
scratch. As a first step of the pipeline, the Data Scientist analyzes the
provided training data, whereby sensitive information may be hid-
den or masked. Direct access to the testing data may as well not be
granted, e.g., due to privacy reasons. After the Data Analysis, the data
is preprocessed to be compatible as model input if necessary. At
this step, the Data Scientist may choose to store a version of the trans-
formed data within the Transformation Registry for faster and more
convenient access on further iterations. If the data transformation
changes on subsequent iterations, the data needs to be stored again.
Otherwise, it can simply be loaded into the experimentation envi-
ronment. Next, the data is split into a training and validation sets,
before the Data Scientist starts building a model. In contrast to the
Data Splitting step of the Data Pipeline, this Data Splitting step further

Figure 3: Definition of the abstract model pipeline.

divides the training data and is not relevant to other pipelines. As
opposed to the test dataset, the validation set is not further used.

Upon Model Building, one has the option to load pre-trained mod-
els from the Model Registry. Within the flow chart in Figure 3, the
Model Registry is illustrated as a single persistence entity. However,
pre-trained models can be loaded from any private or public reg-
istry. Thus, there may be multiple registries available to the Data
Scientist for loading pre-trained models. As an optional step before
training a model, HP Optimization helps a data scientist finding the
optimal configuration of a defined model. Subsequently, a Training
job is launched, which can optionally be distributed over computing
instances, given that the training is a resource-intensive activity.

Whenever a Training or HP Optimization job is executed, the cor-
responding metadata, metrics, and results are stored within the
Experiment Registry. This acts as a central location for experimen-
tation history, not only available to the Data Scientist building the
current model, but also to others for review. Thereby, the evolution
of a model remains comprehensible.
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At the step of Experiment Evaluation, the Data Scientist review their
training experiment based on the validation results and other met-
rics [49]. If not satisfied, they return to the previous stages of the
Model Pipeline. Otherwise, the model is registered on the Model Registry
to make it available for Model Evaluation. At this point, the testing
data is loaded together with the model artifacts to test the produced
model. In case the testing data contains sensitive information, the
Model Evaluation can be conducted in a secure environment. Con-
sequently, the test results are stored to the metrics of the model
within the Model Registry. Based on the evaluation results, the Data
Scientist then decides to either submit the model for review or return
to previous steps of the model pipeline.

During the Model Submission step, the source code of the registered
model is submitted to the Code Repository, although the source code
is within the model artifacts. However, the Code Repository should
hold all the code needed to reproduce a workflow iteration.

After the Data Scientist submitted their model, the Model Validator
reviews the registered and evaluated model by loading correspond-
ing artifacts. A Review focuses on model quality and can include
various metrics such as accuracy, sensitivity, precision, different
error measures, or ranking methods [40]. These metrics can be
compared to other produced models, possibly already deployed
to production. If the results are not satisfactory, the Data Scientist
can return to specific steps within the Model Pipeline and improve
the model version at the Model Validator’s request. Furthermore, the
Model Validator can instruct the Data Engineer to collect new or more
qualitative data, as illustrated in the overview flow chart in Figure 1.
In case of approval, the created model is promoted to production,
which triggers the Deployment Pipeline.

3.4 Deployment Pipeline
Once a model has been approved and promoted to production, the
goal is to deploy the model. Besides other roles involved in the
Deployment Pipeline, the DevOps Engineer is primarily responsible for
bringing a model into the deployment environment. As in the Data
Pipeline and Model Pipeline, there are certain steps within the pipeline
that require computing resources on-demand, such as Model Deploy-
ment. The Deployment Pipeline is illustrated in Figure 4.

In case the model is not yet suitable for future retraining, the
source code needs to be refactored into a performant, automation,
and testing-friendly form. This task called Model Implementation is per-
formed by a Software Engineer as a first step of the Deployment Pipeline. A
Software Engineer has advanced knowledge on runtime performance
and memory usage and can therefore make the source code more
efficient for retraining [22]. They further provide expertise in API
design for effective prediction requests. The implementation is fur-
ther Reviewed by the Model Validator and stored into the Model Registry
with the corresponding model.

As an optional step within the Deployment Pipeline, the model can
be compressed to reduce size and latency, e.g., pruning and quantiza-
tion, low-rank factorization, convolutional filters, and knowledge
distillation. In this case, the model needs to be tested and compared
to the initial model to prevent a significant decrease in accuracy.
For certain model compression techniques, retraining the model is
additionally required before testing [9]. This is conducted during

Figure 4: Definition of the abstract deployment pipeline.

the stage of Model Revision. The model artifacts in the Model Registry
have to be updated, if the model definition has been refactored.

After the preceding preparation steps, the DevOps Engineer packages
the model into an appropriate form for inference, which wraps the
loaded model with an additional layer to serve prediction requests.
Subsequently, they write a manifest that defines the deployment
configuration, and finally deploy the model to production.

Once the model is deployed, a Data Scientist is required to monitor
the model for environment changes. Thus, input data from prediction
requests, together with their metadata and results, are stored in a
database for analysis. In case the model performance declines or
other issues occur, the final step of Model Maintenance initializes the
next iteration based on the interpretation of the Scoring Data.

4 PROTOTYPE IMPLEMENTATION
Throughout the following sections, we describe the implementation
of a minimum viable prototype that enables the DL workflow de-
fined in Section 3. Thereby, we demonstrate the transfer of the con-
ceptual workflow into practical implementation. To do so, we select
available technologies that fulfill the requirements given through
the characteristics of DL listed in Section 1, and our defined work-
flow. Technical instructions on the prototype can be found in the
associated GitHub repository at https://github.com/janousy/CDL.

4.1 Technologies of Choice
There is a relatively new, but fast-growing market for technolo-
gies that partially or completely facilitate the ML workflow. At the
time of this paper, the landscape of tools available is broad and
not fully mature [43]. Few are targeted towards DL only, as their
vendors provide generic solutions to problems of the ML workflow.
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Nevertheless, these solutions can often be transferred to various
subtypes of ML. There are some emerging platforms that try to
cover the complete ML workflow, such as Vertex AI or Sagemaker
maintained by Google and Amazon, respectively. However, these
solutions can introduce immense costs, especially with frequent
usage of GPUs [4, 15]. On behalf of reproducibility, we restrict our
selection of tools to being deployable on-premise, available for free,
and preferably open-source.

4.1.1 Hardware and Infrastructure. We used the computing and
storage resources provided by the ScienceCloud [41] of the Uni-
versity of Zurich (UZH), which lets us provision virtual machines
(VMs): (1) a large VM with 32 virtual central processing units (vC-
PUs), a single Nvidia Tesla T4 GPU and 128GB of random-access
memory (RAM); (2) a small VM with 2 vCPUs and 8GB of RAM.

The specifications of the large VM are chosen regarding the
minimal resources to host all technologies required to run the DL
workflow and meet the demands described in Section 1. A single
GPU is themaximum amount available per VM on the ScienceCloud,
but to demonstrate distributed training, at least two GPUs would be
required. To independently and securely host a Code Repository, a sec-
ond VM was introduced with a near minimal specification to spare
resources. Both VMs run Ubuntu 18.04 as their operating system.

To meet the requirement of scalability within the DL workflow,
we selected Kubernetes as our infrastructure of choice. It serves as
an open-source system for scalable container orchestration [21]. In
the context of this paper, we use Microk8s, a lightweight upstream
Kubernetes with low operation costs and GPU support [8]. However,
the prototype is portable to any Kubernetes version. For our use
case, aMicroK8s single-node cluster is hosted on the large VM. As a
container technology of choice, we use Docker due to being widely
used across the developer community. Furthermore, DockerHub
serves as the container registry to push and pull images.

4.1.2 Workflow Tools. Hereinafter, the technologies that directly
support the implementation of the workflow steps and persistence enti-
ties are described. Our selection is based on the recommendations
of the MLOps Community [28] and Visengeriyeva et al. [43]. It
is important to note that this selection is not fixed and could be
swapped with any tools with similar features.

We choose GitLab [14] as our version control system (VCS),
representing the Code Repository. GitLab can be hosted on premise,
provides mature features for CI/CD and integrates with Kubernetes.

To achieve data lineage, i.e., Data Pipeline and version-controlled
datasets, Pachyderm [31] is selected. It allows us to execute con-
tainerized tasks on a Kubernetes cluster in a scalable, parallel, and
distributed manner. Pachyderm can serve as a general object storage
technology, thus be used to store unstructured datasets, and as the
Transformation Registry by the Data Scientist to cache transformed data.

We used Label Studio [19] to integrate Data Labeling into our work-
flow implementation. It is compatible with various types of data,
especially unstructured data commonly used in DL applications
such as computer vision, natural language processing, and audio
processing [3]. The labels, together with their metadata, are stored
to a PostgreSQL [35] database for fast and convenient queries.

For tasks related to the Model Pipeline, we used a cloud-native
platform specifically targeted towards DL called Determined [11].

This platform addresses the need for distributed Training, HP Optimiza-
tion, and compute resource management. Determined automatically
tracks experiments for analysis and additionally provides a Model
Registry to store model artifacts. Thereby, a Data Scientist can focus
on building and optimizing a model. Under the hood, a PostgreSQL
instance represents the Experiment Registry, whereas a MinIO [27]
bucket is configured to store artifacts of the Model Registry. MinIO
is a widely used, cloud-native object-store.

To deploy models at scale to Kubernetes, Seldon [39] was used. It
supports a large spectrum of ML libraries and deployment config-
urations. A model can be brought to production by simply building
a language wrapper around the model and specifying the container
environment. Although alternative technologies to deploy ML mod-
els on Kubernetes, Seldon appeared to be the most mature solution.

We did not implement the Scoring Data persistence entity, as Model
Monitoring would exceed the scope of this paper. However, a Post-
greSQL database holding results of requests, and possibly references
to provided files stored to Pachyderm, would be applicable.

4.2 Mapping Abstraction and Implementation
With the technologies selected in Section 4.1.2, we can build a DL
system that implements our abstract workflow of Section 3. By
mapping the technologies to tasks and persistence entities, we demon-
strate how these integrate into the DL workflow. For each pipeline,
we will walk through the practical utilization of the technologies.

4.2.1 DataPipeline Implementation. Besides other tools for CI/accd,
the main technologies within the Data Pipeline are Pachyderm and
Label Studio. The Data Engineer defines all steps of the pipeline with
a programming language of choice, from Data Collection to Data Val-
idation. As mentioned in Section 3.2, the steps Data Collection and
Data Splitting are not necessarily part of the automated pipeline. In
our case, the Data Labelling also remains a manual step. The Data
Engineer can define different sources for training and testing data,
which implicitly splits the data, and then build separate pipelines.
However, it is important that both data sets are processed the same
way, i.e., the same scripts for each step are used. Otherwise, the
datasets could exhibit different characteristics, for example when
the training and testing data are validated differently.

Once all steps are defined, the Data Engineer packages the scripts
into a pipeline by writing a manifest complying to the Pachyderm
format, which has either JavaScript object notation (JSON) or yet
another markup language (YAML) format. Within this manifest,
they optionally specify the resources to be used at each step, such
as GPU, central processing unit (CPU) and memory. Additionally,
one can define how ingested data is processed, e.g., as streams or
in batches. The Data Engineer further defines the Docker container,
wherein the pipeline is executed. They then commit their work to
the GitLab Code Repository. This triggers the build of the Docker im-
age and subsequently a push to DockerHub. Moreover, the pipeline
is indirectly deployed to Kubernetes via Pachyderm. The execution
of the pipeline is initiated each time data is ingested.

Pachyderm presents input and output repositories for each pipeline.
Thus, the output of the Data Validation can automatically be ingested
into Label Studio. Once the data has been annotated by the data
labeler, the labels are exported in a format of choice into another
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Pachyderm repository. From there, the labels are stored to a Post-
greSQL database, where the testing and training data reside in
separate tables. Within a table, a row keeps information about the
label, the corresponding file path to the validated output repository,
and metadata, e.g., labeler, date, and dataset version.

Data Versioning is automatically performed by Pachyderm in a git-
like manner. Each repository, i.e., bucket, allows branching and
annotates ingested data with commit IDs. Upon further iterations
of the Data Pipeline, a Data Engineer can ingest on a new branch or
distinguish between dataset versions using the commit ID within
the same branch. Similarly, the pipeline manifest is versioned as
well, thereby it remains fully comprehensible how a specific dataset
version was produced. Data lineage is therefore guaranteed.

4.2.2 Model Pipeline Implementation. Within the implementation
of the Model Pipeline, a Data Scientist mainly interacts with Determined
and Pachyderm. To initiate an experiment, a new branch within
GitLab is created, either from an existing branch or from scratch.
While operating locally, they can choose to work in a notebook
environment offered by Determined or directly write scripts as their
source code. However, a notebook will have to be downloaded
manually and checked into version control.

At the first step of the Model Pipeline, the training data is loaded
from Pachyderm, analyzed, and preprocessed. The transformed data
can be stored to a Pachyderm repository and accessed on further it-
erations for faster development. After splitting the data into a train
and validation set, they start building the model using a Determined
compatible definition. Therefore, a trial class must be built that
implements a predefined set of member functions for initialization,
training, evaluation, and data loading. Through these restrictions,
a Data Scientist does not need to take care of logging and visualiz-
ing metrics, or saving model checkpoints. Within the process of
Model Building, pre-trained models can be loaded from the internal
Determined Model Registry or any external model registry, such as
the Hugging Face transformer library [44].

Besides a model definition, Determined additionally requires a
configuration file in YAML format, which specifies HPs, resource
requests, data source, and version, etc. The Data Scientist can then
use the same model definition with different configuration files
for HP Optimization and (Distributed) Training. Moreover, Determined
executes jobs on agents within containers scheduled by a master.
A Data Scientist can either specify software dependencies within a
startup script, or build a container image for the agent to run on.
If a Docker image is used, it is built and pushed upon a commit
to GitLab and subsequently pulled by Determined on a run execu-
tion. Within the process of HP Optimization and (Distributed) Training,
a Data Scientist can review and compare their executed jobs on the
Determined user interface (UI) until a satisfying model.

Once a Data Scientist approves of the validated model, they can reg-
ister a selected model checkpoint through the Determined command-
line interface (CLI). To synchronize the Code Repository with the lat-
est model version, the corresponding model definition has to be
downloaded manually from the Model Registry before committing. At
the step of Model Evaluation, a commit to the experiment branch on
GitHub triggers the model testing, which loads the testing data from
Pachyderm and the latest model version from the Model Registry for
evaluation. This commit is required as a model should be evaluated

remotely and GitLab cannot listen for changes in the Determined
registry due to a lack of change events. The results are then written
to the model metrics and additionally presented as aGitLab pipeline
artifact to the whole team.

If a Data Scientist agrees, they perform a Model Submission with
a merge request on GitLab. The Model Validator then reviews the
experiment and, if approved, the Deployment Pipeline is triggered.

4.2.3 Deployment Pipeline Implementation. After the Model Validator
has approved a model, it is prepared for production. In the context
of our minimum viable prototype, we skip two steps of the Deploy-
ment Pipeline: (1) we do not perform Model Compression, as we deploy
to Kubernetes and inference latency is neglected; (2) Model Monitoring
is omitted as this would exceed the scope of this paper.

First, a Software Engineer fetches the model definition from Git-
Lab to refactor the source code, which also includes the sources
for Data Preprocessing. After the Implementation Review and Model Com-
pression, we retrain, evaluate and test the model for performance,
e.g., model size and inference latency, at the step of Model Revision.
Therefore, the Model Validator loads model artifacts from Determined,
the refactored model definition from the Code Repository, and the
datasets from Pachyderm.

Once the revision is approved, the DevOps Engineer builds the
model wrapper for Seldon. The wrapper is essentially a Python
class that defines at minimum how the model is loaded and how
inputs are preprocessed for prediction. Additionally, aDocker image
defines the container for the model environment at run-time. At
the step of Model Deployment, the DevOps Engineer commits the deploy-
ment manifest to the main branch to trigger the deployment. The
deployment manifest specifies what resources are available to the
model. Then, a GitLab pipeline builds and pushes the Docker image,
and deploys the packaged model to Kubernetes using Seldon.

5 USE CASES
To investigate the practicability of our implementation and the em-
bedded pipelines established in Section 4, we apply two use cases to
the prototype. These use cases address common but distinguished
problems of DL, using different frameworks to provide variety. The
source code for each use case including the setup is available on
GitHub at https://github.com/janousy/CDL.

5.1 News Classification
In our first use case, the goal is to address an natural language
processing (NLP) problem. Therefore, a multinomial news classi-
fication model trained and evaluated on the BBC datasets [17] is
constructed using PyTorch [32].

The BBC datasets consists of 2,225 text documents that repre-
sent news articles from the years 2004 and 2005, collected from the
official BBC news website [17]. The documents in English have var-
ious lengths and are divided into the following categories: business,
entertainment, politics, sport, and tech. To be able to demonstrate
the complete data pipeline, we use the raw version.

As a DevOps Engineer, we initially set up a GitLab repository with
a main folder and a GitLab pipeline for CI/accd. The main folder
includes subdirectories for data, model, deployment, and test code.
The Code Repository has two branches, one for development (dev)
and one for production (main).

7

https://github.com/janousy/CDL


Data Pipeline. We assume the role of a Data Engineer and perform
the first steps of the Data Pipeline manually using Python scripts. By
downloading the dataset locally, giving each file a unique ID, merge
each category and randomize the order, we prepare the data set for
ingestion. Then, the dataset is split into a train and test set, i.e., hold
out set, using an 80–20 ratio [7] and we automatically create labels
in LabelStudio JSON format for each article, as we do not possess
the resources for manual labeling.

A simple Python script then defines how data is ingested, cleaned,
and validated. We replace characters not being UTF-8 conform, en-
sure that the articles have a minimum character length and TXT
file format. Articles not corresponding to the minimum character
length or file format are invalid and therefore discarded. Valid arti-
cles are copied to the output repository defined by Pachyderm. After
the steps of Data Ingestion, Data Cleaning and Data Validation are defined,
we initialize two separate Pachyderm repositories for the train and
test datasets. Two pipelines for each dataset are then constructed,
which essentially execute the same afore-mentioned script with
different input paths

We then prepare the Docker container for both pipelines to run
on. The image installs the required packages and pulls the source
code defining the pipeline. In this use case, the pipeline is directly
committed to the production branch in the GitLab repository. Git-
Lab then automatically builds and pushes the Docker image and
deploys the pipelines to Pachyderm on Kubernetes.

Subsequently, both training and testing data can be ingested into
the corresponding pipeline with a single Pachyderm CLI command.
The validated data is synchronized into Label Studio and available
for manual labeling. An additional Pachyderm pipeline facilitates
the export of the labels from Label Studio into the respective table
within the PostgreSQL database. A single row holds the label itself,
the file path to the article in the Pachyderm repository, additional
metadata about the label, and the matching Pachyderm branch for
data lineage. Note that in this use case, a model is not automatically
retrained upon ingestion of new data or changes to the pipeline,
but this could be enabled using an additional GitLab pipeline stage.

Model Pipeline. We take over the role of a Data Scientist and start the
first step of Create Experiment. We create a new branch within the
GitLab repository, in this case from the main branch. As we are
already provided with sufficient knowledge about the BBC dataset,
the step of Data Analysis is omitted. Nevertheless, the labels that re-
side in the PostgreSQL training table are loaded together with the
corresponding news articles from Pachyderm.

To transform the text data into input conform to the model, a
simple NLP approach is applied. This includes Porter stemming [34]
and token count vectorization using the feature extraction capabili-
ties of scikit-learn [33]. As a vocabulary, we use the one provided by
Greene [16]. The target classes are similarly encoded into numeric
values. The preprocessed data is then again split into a training and
validation sets at an 80–20 ratio [7]. In this use case, the prepro-
cessed data is not stored to a Transformation Registry for simplicity.

During Model Building, we locally create the required trial class
for Determined using PyTorch. Our basic model is a neural network
of five linear layers with layer normalization and dropout applied.
Additionally, a separate configuration file defines the Pachyderm

repository and branch, hyperparameters such as dropout rate, hid-
den layer size, learning rate, and metadata about the experiment.

To start the HP Optimization, we specify a reasonable search space
for each hyperparameter and then submit our configuration to the
cluster using the Determined CLI. Vocabulary, classes, and a list of
required software packages are automatically uploaded to the Model
Registry. In the context of this use case, we use the asynchronous
successive halving algorithm (ASHA) algorithm, which supports
early stopping of low performing configurations [23]. Determined
then presents various visualizations and metrics to find the optimal
hyperparameter configuration. Since the parameters in the config-
uration are loaded at run-time, we can consequently use multiple
configuration files for HP Optimization and (Distributed) Training with
the same code for preprocessing and model definition. Thus, we
write an additional configuration file for training using the results
of HP Optimization, and again submit everything to the cluster.

When finally arriving at a satisfying performance, we select the
checkpoint UUID of the preferred experiment, register the model
through the Determined CLI, and push our local changes to the
remote repository to trigger the GitLab pipeline and evaluate our
model. Model Evaluation is facilitated through a Python unit test,
which loads the model and the test data and only passes if a mini-
mum accuracy threshold of 0.7 is reached.Within an initial iteration
of the DL workflow, either the Data Scientist himself or a DevOps Engi-
neer writes test cases. Who is responsible for testing a model highly
depends on whether the test data is confidential.

Subsequently, we can request a merge onto the development
branch. The GitLab pipeline produces a text document with the
test results and a list of all model versions with their corresponding
checkpoint UUID. Thereby, as the Model Validator, we can conclude
the experiment within the Determined UI. If the model is adequate
for production, the merge request is accepted.

Deployment Pipeline. The experiment is now approved and merged
into the development branch. As this is only a demonstration use
case, we do not consider model performance, and the steps of Model
Implementation, Implementation Review, and Model Revision are omitted.

We further assume the role of a DevOps Engineer. To package the
model for deployment, we build a Python class that has two func-
tions: one function initializes the model, therefore loads the model
including its artifacts by downloading from the Model Registry within
Determined. The other function defines how a prediction is per-
formed. In this context, the input is transformed the same way as
during model Training, i.e., stemmed and tokenized using the vocab-
ulary. The numerical output returned from the model is resolved
to the respective category using the label encoding.

To deploy a model with Seldon, we define a Docker image that
copies the model wrapper and installs the required dependencies.
The deployment manifest is specified using a YAML file, serving
the packaged model as a representational state transfer (REST) API
and specifying the Docker image as the surrounding container.

For continuous delivery of future model improvements, the steps
of building and pushing the Docker images as well as deploying to
Kubernetes are automated through GitLab pipeline jobs. These are
specified to be executed only on pushes to the production branch.
In the context of testing, the model could additionally be deployed
to a development environment as an additional staging process.
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5.2 Fashion Classification
The second use case derives a multinomial image classification
model using TensorFlow [1] and the Fashion-MNIST dataset pro-
vided by Zalando Research [45]. Thereby, a classical computer vi-
sion example of DL is tackled.

The Fashion-MNIST dataset consists of 60,000 training and 10,000
testing images of clothing articles [45]. The grayscale 28×28 im-
ages are divided into ten categories: T-shirt/top, trouser, pullover,
dress, coat, sandal, shirt, sneaker, bag ,and ankle boot. The dataset
is available for download on GitHub [47] as separate binary files
representing labels and images.

As in the first use case, we set up a GitLab repository, including
a pipeline and main folder containing the sources in subdirectories,
and starting with two branches for development and production.

Data Pipeline. The pipeline resembles our first use case in many as-
pects, but instead of storing text documents, we would store image
files in the Pachyderm repositories. To simplify this use case, we
directly store the compressed binary files containing the prepro-
cessed fashion images and labels in a Pachyderm repository. We
assume that the data has already been cleaned and validated, thus
no Data Pipeline is constructed.

Model Pipeline. Similar to the first use case, initially an experiment
branch is created from the production branch. Assuming the role of
a Data Scientist, we load the labels and source images from the respec-
tive Pachyderm repository and decompress them. To preprocess the
dataset, the pixel values within a scale of 0 to 255 are normalized
to a scale of 0 to 1. Similar to the first use case, we do not store
the preprocessed data frame into a Transformation Registry, although
Pachyderm could very well be used therefor. A validation set is then
split off at an 80–20 ratio.

To demonstrate the application of different ML frameworks, Ten-
sorFlow Keras is used to build our image classification model, based
on an example provided in the official documentation [10]. For Model
Building, a sequential model is constructed composed of a flat input
layer, a dense hidden layer of variable size, and a dense layer fixed
at the number of output categories. The remaining steps follow the
process of the first use case.

Deployment Pipeline. As in the first use case, we omit the first four
steps of the deployment pipeline. Again, as DevOps Engineer, we build
a Python class that packages, i.e., wraps the model. At this step,
only the classes defined in the Model Pipeline are loaded as model
dependencies. We then construct a Docker image that starts the
Seldon microservice, and serves the model as a REST API. Merging
the source code from the development branch onto the main pro-
duction branch ultimately triggers the build of the Docker image
and finally the deployment to Kubernetes.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we described a detailed step-by-step DL workflow,
split into three pipelines, such that each component is indepen-
dently reproducible and thereby enabling fast iterations.We provide
a general guideline on the DL development process that helps to
build DL models and continuously improve them through efficient
and reproducible iterations. Additionally, our recommended set of
technologies can be used as a reference for future implementations.

Considering our abstraction of the DL workflow, it becomes ap-
parent that there is a dependency on various persistence entities
with different functions. This increases data management costs
and complicates collaboration, as knowledge about storing and
retrieving data is required. On the contrary, these persistence entities
are required to keep the workflow reproducible. With continuous
iterations of the DL lifecycle, it becomes important to align the
related data between persistence entities. As an example, additional
effort is required to keep the registered model and the version in the
Code Repository aligned. From a technical perspective, both the Model
Registry and Code Repository, are crucial. On the one hand, VCSs do
not allow storing large artifacts such as a DL model. On the other
hand, a Model Registry cannot provide a history of code changes, and
efficiently hold all source code of the DL workflow. An adopted VCS
concept that manages ML data, model artifacts, workflow source
code, etc., as a single set of dependencies in a central location would
facilitate the DL, and the ML workflow in general.

Through a prototype, we showed that it is possible to translate
the conceptual idea to practice using the latest technologies avail-
able on the market. It becomes clear that a large amount of different
technologies is necessary to execute the complete DL lifecycle. Al-
though there are all-in-one solutions available, these technologies
often suffer from vendor lock-in and are associated with high costs,
and they are not directly targeted towards DL. The large technol-
ogy stack imposes the need for interfaces between tools, activities,
and roles. This in turn introduces additional hazards to the imple-
mented workflow. For example, we use a complex constellation of
technologies within the data pipeline, which can become confusing
and error-prone.

With the application of two distinguished use cases, we demon-
strated the practicability of our DL workflow. However, the use
cases do not represent the complexity of real-world challenges.
Future work should therefore focus on evaluating the proposed
concept in various industries to find possible alterations or incon-
sistencies. For instance, a field study could compare the proposed
workflow to the processes within companies that have already
brought DL into use. By accompanying multiple projects and work-
flow iterations, all performed activities are collected and mapped to
our components. This procedure would ultimately highlight abun-
dant ormissing steps within the proposedworkflow, inconsistencies
in liabilities or more suitable technologies.
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