
COSMIC Functional Measurement of Mobile Applications
and Code Size Estimation

Loris D’Avanzo, Filomena Ferrucci, Carmine Gravino, Pasquale Salza
University of Salerno

Via Giovanni Paolo II, 132, Fisciano (SA)
Italy

{fferrucci, gravino, psalza}@unisa.it

ABSTRACT
The paper presents the application of the COSMIC functional size
measurement method in mobile environment. In particular, we
describe how COSMIC has been applied to Android mobile
applications, also through an example of measurement, and the
identification of some possible recurrent patterns. Moreover, we
report the results of an empirical study carried out to verify the
ability of the COSMIC measure to estimate mobile applications
code sizes, i.e., the amount of needed memory. The results show
that in the considered domain it is possible to get early and
accurate prediction of the needed memory space in bytes.

Categories and Subject Descriptors
[D.2.8] Metrics; [D.2.9] Management;

General Terms
Measurement, Management, Experimentation

Keywords
Functional size measurement, COSMIC, Mobile application,
Empirical study

1. INTRODUCTION
Functional Size Measurement (FSM) methods measure software
size in terms of the functionality provided to the users and have
been introduced to overcome the limitations of the LOCs [8].
Among FSM methods, Function Point Analysis (FPA) was the
first to be introduced in 1979 [1] and since then several variants
have been defined (all known as 1st generation of FSM methods)
with the aim of improving size measurement or extending the
applicability domain. COSMIC is a 2nd generation FSM method,
being the first to be conceived for complying to the standard
ISO/IEC14143/1 [8]; it is based on fundamental principles of
software engineering and measurement theory, and it was
developed to be applicable to business, real-time, and
infrastructure software (or hybrids of these) [6]. FSM methods
have been widely applied both in software engineering research
field and industry for sizing software systems and then employing
the obtained functional size as independent variable in estimation

models (e.g., effort estimation models), for productivity
benchmarking, quality evaluation, etc.

Mobile applications domain is growing and in the near future
specific software engineering processes, including functional size
measurement and estimation techniques, could be used to improve
the quality of those applications. As a matter of fact, the
International Function Point User Groups (IFPUG) has recently
proposed a sort of guidelines for the application of IFPUG FPA to
mobile applications [16], [17] and some software companies tried
to apply it [18]. As for COSMIC, at the best of our knowledge,
only a preliminary example of application of the method for the
mobile context has been reported in the literature [15]. In this
paper, we show how we have used the COSMIC method to
measure the functional size of a data set of 8 mobile applications,
trying also to derive some common cases that can be useful as a
first draft of guidelines for software measures. We took into
account applications that manage information and have a database
and we were supported by the Business domain specifications of
the COSMIC guide. Moreover, we focused on the issue of
memory size used by applications into mobile devices: in the
current era mobile user can obtain a lot of applications out of the
box, but a wide range of device is not able to maintain all of them.
Code size with respect to functionality can also provide an
indication of efficiency of the mobile application. So, it is
important to control and predict the needed memory size in the
early phases of the application development process. To this end,
we propose to exploit the COSMIC functional sizes of Android
mobile applications to estimate the corresponding compiled code
sizes (i.e., the amount of memory used). This approach is similar
to the one recently employed in the context of embedded
applications [12][13][14]. We present the results of a preliminary
study we conducted employing 8 Android mobile applications and
the linear regression as estimation techniques.

Paper structure: Sec. 2 briefly describes the method COSMIC
and how it has been applied on mobile applications in our study.
The performed empirical study and the achieved results are shown
in Sec. 3. Conclusions and future work conclude the paper.

2. Measuring Mobile Applications
In this section we first describe the COSMIC size measurement
method and then how we applied it on mobile applications.

2.1 COSMIC FSM
Functional size is defined as ‘size of the software derived by
quantifying the Functional User Requirements (FURs)’ [6]. FURs
describe what the software is expected to do for its users. Some
examples are data transfer, data transformation, data storage and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’15, April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04…$15.00.
http://dx.doi.org/10.1145/2695664.2695948

1631

data retrieval. COSMIC defines a standardized measure of
software functional size expressed in COSMIC Function Point
(CFP) units. The measurement is designed to be dependent by
only the FURs of the software to be measured and independent
from any requirements/ constraints about their implementation.

Main concepts. A functional process is one of the main concepts
defined in COSMIC. It is a set of data movements representing an
elementary part of the FURs. A functional user is defined as a
(type of) user that is a sender and/or an intended recipient of data
in the FURs; this means a functional user can be a human or for
instance an external device as well. Moreover, a boundary is a
conceptual interface between the software being measured and its
functional users. With these definitions, it is possible to focus
about the four different data movement types: Entry (E) types
move data from a functional user to a functional process; Exit (X)
types move data from a functional process to a functional user;
Write (W) types move data from a functional process to persistent
storage; Read (R) types move data from persistent storage to a
functional process.

1 CFP unit is given per each data movement and their sum
represents the measurement size. COSMIC method defines a
measuring process, which consists of three phases: the
Measurement Strategy Phase, the Mapping Phase, and the
Measurement Phase. Each of them is explained in the following.

Measurement Strategy Phase. This is the preliminary work
phase in which the key parameters of the measurement are
defined. Some of them are: the purpose, which defines what the
measurement result will be used for; the scope defining which
pieces of software (in terms of FURs) have to be measured; the
level of granularity which describes how much detailed the
documentation about the software is (e.g., in terms of the
requirements description or also the structure description). All
parameters are defined in the COSMIC Context Software Model
and it is extremely necessary to define them carefully. In addition,
when different functional sizes are compared and then the
purposes of their measurements are equal, as in our work, it is
essential to define this phase in a consistent way for ensuring the
results being safely compared. COSMIC defines several
Measurement Strategy Patterns for many commonly situations in
which the COSMIC method needs to be consistent for different
measurements [5]. A Measurement Strategy Pattern defines a
standard combination of parameters to be determined in the
Measurement Strategy Phase of a COSMIC measurement process.
It also defines the possible types of data movements and provides
a template for drawing the Context Diagram for the software to be
measured [4]. Measurement Strategy Pattern is a concept
introduced in the last current version (4.0) of COSMIC [6].
Previous versions do not refer to any strategy patterns.

Mapping Phase. In this phase the measurer extrapolates the
functional processes from the available FURs. It is a technical
work in which the principles and, above all, the rules of the
COSMIC method (reported in the COSMIC Generic Software
Model) have to be carefully complied with. The measurer
identifies the potential functional processes inside the FURs
remembering that each functional process is started by a
triggering E and shall comprise at least two data movements: an E
plus either an X or a W. The triggering E is the E of the functional
user that starts the functional process. A functional process cannot
have more than one triggering E. In some cases there could not be
a one-to-one relation between a FUR and the functional processes.
Data manipulations inside a functional process are not counted as
CFP [6], thus COSMIC is not able to size data manipulation

intensive systems. The object of interest is defined as any ‘thing’
that is identified from the point of view of the FURs; it may be
any physical thing, as well as any conceptual object or part of a
conceptual object in the world of the functional user about which
the software is required to process and/or store data. Objects of
interest should not match with terms related to specific software
engineering methods (e.g., Object Oriented). Each E, X, R, or W
is a movement of data group of a single object of interest. There
are only two exceptions: the triggering E which can start a
functional process without data movement, e.g., in specific
enquiry for a list of items; the error/confirmation message which
is defined as an X for the attention of a human user that either
confirms only that entered data has been accepted, or only that
there is an error in the entered data.

Measurement Phase. It defines how to count data movements,
consisting in associating a CFP to each data movement. The
amount of all data movements represents the functional value of
the measurement. It is worth noting that in cases (differently from
our work) of aggregating measurement sizes (software stratified
into different layers) or when measuring the size of software
changes, this phase may become more complex [6].

2.2 Applying COSMIC on the analyzed
mobile applications
COSMIC defines two main domains of applicability [6]:
• Business Application Software that typically supports

business administration, such as banking, insurance,
accounting, personnel, purchasing, distribution or
manufacturing, etc.

• Real-time Software that is typically employed to control
events happening in the real world. Examples are software
for telephone exchanges and message switching, software
embedded in devices to control machines such as domestic
appliances, elevators etc.

Mobile environment consists of several types of applications. In
this paper, we focus on applications fable to manage data and
information exchanged with a persistent storage inside the
Android device. Those applications include CRUDL (Create,
Read, Update, Delete, List) functionality, import/export data,
sharing info, etc. They fall in the Business Application Software
domain [4]. In the following, we describe our work methodology,
by first presenting the employed Measurement Strategy Pattern
and then describing how the measurement is made on a mobile
application and some recurrent cases during the Mapping phase.

2.2.1 Measurement Strategy Pattern
The purpose of our measurements is to obtain the size of the
FURs of the delivered Android applications, to be employed for
estimating the needed amount of memory in the Android system.
Then we define the scope of the measurement that consists of all
FURs executed inside the developed application. This means that
all the data movements inside the application are counted in the
measurement. Whenever there is an external application used to
execute a functional process (e.g., email application for sharing
data), only the data movements between the application being
measured and this external application are counted, as defined by
the Context Diagram in Figure 1. Note that the diagram symbols
are consistent with what is stated in [6].
Thus, the further amount of memory needed for external
applications is not of interest for the aim of our study, and then
their data movements cannot added to the data movements of the
application being measured. On the contrary, we took into account

1632

the data movements to/from external applications that are relevant
for the amount of memory the application needs.

Figure 1. The Context Diagram

Example. Table 1 contains the FURs of an application considered
in our empirical study. It implements a digital academic transcript
handled autonomously by the user. Table 2 shows the results we
obtained by applying the Mapping phase of the proposed process.

Table 1. Functional requirements of academic transcript
Functional User Requirements

R1
User opens the application to see on home screen the principal info
included in his transcript, i.e., the list of exams, the number of
exams, the number of credits and the average mark.

R2
User clicks on the icon button ‘new’ to insert data about a new
exam in the database. The system provides error/confirmation
messages.

R3
User selects an exam from the list in the home screen and clicks on
the button ‘delete’ to delete it from the database. The system
provides error/confirmation messages.

R4
User clicks on the button ‘delete all’ to delete all the exams data
from the database. The system provides error/confirmation
messages.

R5
User selects an exam from the list in the home screen and clicks on
the button ‘update’ to update its data in the database. The system
provides error/confirmation messages.

R6 User selects an exam from the list in the home screen and clicks on
the button ‘details’ to see detailed info.

R7

User clicks on the icon button ‘projection average’ and the system
shows a new box containing the current average mark and a form.
The user selects in the form the number of expected exams, their
number of credits and their expected mark. The system provides the
expected average mark given by the input data values and the
current exams.

R8 User clicks on the button ‘export exams’ to export exams from
database to SD. The system provides error/confirmation messages.

R9

User clicks on the button ‘import exams’ to import exams from SD
to the database. The system provides two error/confirmation
messages, one for the input from SD and another for the writing on
the database. The system shows the list of exams after importing.

R10 User sets the lode value for the statistics (30+0, 30+1 etc.). The
system provides error/confirmation messages

R11 User sets maximum credits value. The system provides
error/confirmation messages

R12 User clicks on the button to read change log.
R13 User clicks on the button to read FAQ.
R14 User clicks on the button to read application license.

R15 User clicks on the button to read info to donate a payment to the
developer.

R1 consists of a basilar reading requirement that is mapped into a
single functional process with six data movements, 1 triggering E
of the human user, 1 R to the persistent storage for the required

information and 4 Xs, one for each of information data sent to the
user (the list of exams, the number of exams, the number of
credits, and the average mark). Other requirements also consist in
providing information to the user (e.g., R6, R12-R15) requested
by a simple click. So, for them we have 3 data movements (as
shown in Table 2). R2 consists in adding a new element in the
database, thus we have 1 E for requesting the functionality and
providing the corresponding parameter values, 1 W for create the
new exam, and 1 X for possible error message. W data
movements characterize also R3 and R4 that require a deletion,
and R10 and R11 that consist in a setting operation.

There are also requirements more articulate (in terms of functional
processes), e.g., R5 ‘update exam’, R7 ‘average mark projection’,
and R8 ‘export exams’. In R5, the human user can select the exam
from the list shown on the principal screen of the application, then
data about the selected exam are shown in a new screen in order
to allow user to update them. The data movements are:

• 1 (triggering) E - Exam data (ID) selected from list
• 1 R - Exam data (all) to update
• 1 X - Exam data to update
• 1 E - Exam data updated
• 1 W - Exam data
• 1 X - Error/confirmation messages.

Table 2. Data Movements of academic transcript FURs
E X R W Cases CFP

R1 1 4 1 0 (i) 6
R2 1 1 0 1 (iii) 3
R3 1 1 0 1 (iii) 3
R4 1 1 0 1 (iii) 3
R5 2 2 1 1 (iv) 6
R6 1 1 1 0 (ii) 3
R7 4 2 1 0 (v) 7
R8 1 2 1 0 (viii) 4
R9 2 3 0 1 (vii) 6

R10 1 1 0 1 (iii) 3
R11 1 1 0 1 (iii) 3
R12 1 1 1 0 (ii) 3
R13 1 1 1 0 (ii) 3
R14 1 1 1 0 (ii) 3
R15 1 1 1 0 (ii) 3

 21 22 9 7 59

As for R7 ‘average mark projection’, the functional process starts
after a triggering E of the human user who clicks on the button
‘projection average’, then the functional process reads the list of
exams from the persistent storages, computes the marks average
and provides this information to the user with the new form. The
user selects the values for number of exams, number of credits,
and total mark and the system provides the new estimated
average. So, data movements are:

• 1 (triggering) E - Click on the button
• 1 R - List of exams data
• 1 X - Current average mark
• 3 E - one for each input value selected by the user
• 1 X - Estimated average mark.

As for R8 ‘export exams’, the list of exams is exported to the
Secure Digital (SD) memory which is identified as a functional
user. The functional process starts after a triggering E of the
human user who clicks on the button ‘export’, then the functional
process reads the list of exams from the persistent storage. Finally,
the functional process executes the export operation to the

1633

functional user SD. Data movements are:

• 1 (triggering) E - Click on the button
• 1 R - List of exams data
• 1 X - List of exams data
• 1 X - Error/confirmation messages.

2.2.2 Some Common Cases: Towards
Guidelines for COSMIC Measurement of
Mobile Applications
As we can observe from the Mapping phase of the academic
transcript measurement, there are some kinds of FURs that are
mapped into similar functional processes, i.e., with the same data
movements (e.g., R12-R15). So, we tried to abstract those
measurement processes giving a sort of guidelines for those
common cases (considering that our data set falls in the Business
domain and the analyzed applications manage data with an
internal database) that are listed below:

(i) For mapping FUR as ‘User opens the application to see info
listed on home screen’, the data movements are:
• 1 (triggering) E - The enquiry (represented by the

opening application
• 1 R - Data (List of items)
• 1 X - Data (List of items)

For each other expected data shown on the screen an additional
couple that includes 1 R and 1 X is added. But if the data is given
by a data manipulation on the list of items, only 1 X is added
(because there are no additional Rs to the persistent storage).

(ii) For mapping FUR as ‘User clicks on the button to read info’
or ‘User selects an item from the list to see its detailed info’,
the data movements are:

• 1 (triggering) E - The only enquiry (or) the item ID
• 1 R - Data (Info)
• 1 X - Data (Info)

(iii) For mapping FUR as ‘User clicks on the button to
Create/Set/Delete/Delete all data’, the data movements are:
• 1 (triggering) E - The only enquiry (Delete/Delete all)

or data (Create/Set)
• 1 W - Data to delete/insert from/into the persistent

storage
• 1 X - Error/Confirmation messages

(iv) For FUR as ‘User clicks on the button to update data’, the
data movements are represented by the functional process to
enquire the data (ii) and the functional process to update
them (iii), giving rise to six data movements.

(v) For FURs where the system processes input data and data
present in the database to provide an output to the user, the
data movements are:
• 1 (triggering) E - The enquiry
• 1 R - Data on the persistent storage to be processed
• 1 E - Input data to be processed
• 1 X - The result shown on the screen

If there are other values to elaborate given in input by the user or
retrieved from the persistent storage as well, additional E/R are
mapped (e.g., in R7 we had 2 more Entries for the corresponding
data). Additional Xs are also possible whenever different data are
shown to the user (e.g., in R7 we had 1 more X, for the current
average mark). If the system provides Error/Confirmation
message, the correspondent X is also added.

(vi) For FUR as ‘User clicks on the button to share data with an
external application’, the data movements are:
• 1 (triggering) E - The enquiry
• 1 R - Data
• 1 X - Data to external application

Additional error/confirmation messages after the X are not
handled by the application being measured. If they occur, they are
managed by the external application or by the Android system.

(vii) For FUR as ‘User clicks on the button to import data from
the SD to the database’, the data movements are:
• 1 (triggering) E - The enquiry
• 1 E - Data from SD
• 1 X - Error/confirmation messages
• 1 W - Data
• 1 X - Error/confirmation messages

If the imported data are shown on the screen, as in academic
transcript (see R9), another X is counted.

(viii) For FUR as ‘User clicks on the button to export data from
the database to the SD’, the data movements are:
• 1 (triggering) E – The enquiry
• 1 R - Data
• 1 X - Data to SD
• 1 X - Error/confirmation messages

In a way similar to the previous mapping, if data are shown on the
screen before the export step another E is counted.

The above cases are listed near to each requirement in Table 2.

3. The empirical study
In this section we present the empirical study we performed to
assess whether the functional size, in terms of COSMIC, of
mobile applications can be used to estimate the application code
size, in terms of kilobytes (i.e., the amount of needed memory).
To this end, we defined the following research question:

RQ: Can COSMIC measure be used to estimate the mobile
application code size in kilobytes of compiled code?

In the following, we first describe the design of the study (Sec.
3.1) and then present and discuss the achieved results (Sec. 3.2).

3.1 Design of the Study
We describe the design of the study by providing details about the
employed data set, estimation technique, validation method, and
evaluation criteria. Threats that could affect the validity of the
empirical study are also discussed.

Data set. It was related to 8 mobile applications downloaded from
the Android applications market (google play). For each
application one of the authors derived the FURs document. The
COSMIC FSM was applied to that FURs document obtaining the
data movements reported in Table 3. In the table we reported for
each application also the code size (CodeSize column)
representing the amount of memory needed by the application.
Table 4 summarizes this information, reporting the descriptive
statistics of the variables employed in our analysis.

Estimation technique. The goal of our study was to verify
whether or not the functional size of a mobile application can be
exploited to predict the corresponding code size (i.e., the amount
of memory needed by the application). To this end, we verified
the strength of the relationship between the variable CodeSize and
the variable CFP, by performing a Linear Regression (LR)

1634

analysis. LR is one of the most commonly used statistical
techniques for exploring the relationship between a dependent
variable and one or more independent variables, providing a
prediction model described by an equation [2]:

y = b1x1 + b2x2 + ... + bnxn + c (1)
where y is the dependent variable (the size), x1, x2, ..., xn are the
independent variables (the predictors) with coefficient bi, and c is
the intercept. In our empirical study we have exploited simple LR
to obtain linear regression models that use CodeSize as dependent
variable and only one variable, i.e., CFP, as independent variable.

To evaluate the goodness of fit of a regression model, several
indicators can be considered. Among them, the square of the
linear correlation coefficient, R2, shows the amount of the
variance of the dependent variable explained by the model related
to the independent variable. Other useful indicators are the F
value and the corresponding p-value (i.e, Sign F), which high and
low values, respectively, denote a high degree of confidence for
the prediction. We have also considered the p-values and t-values
for the corresponding coefficients and the intercept. The p-values
give an insight into the accuracy of the coefficients and the
intercept, whereas their t-values allow us to evaluate their
importance for the built model. In particular, p-values less than
0.05 are considered acceptable, meaning that the variables are
significant predictors with a confidence of 95%. As for the t-
value, a variable is significant if its value is greater than 1.5.

Table 3. Data set

Application name CodeSize
(KB)

Data Movements
CFP

E X R W
Academic transcript 584 21 22 9 7 59
FuelStat 444 14 20 10 5 49
Simple Money 404 18 18 5 11 52
JustNote 292 15 19 5 9 48
Check list 208 13 13 4 4 34
Store products 164 10 12 3 5 30
Shopping note 160 10 11 4 6 31
Simple note 60 6 6 2 4 18

Table 4. Descriptive statistics of the variables

Variables Obs Min Max Mean Median Std.Dev
CodeSize 8 60 584 289.5 250 175.479
CFP 8 18 59 40.12 41 13.892

Validation method. To verify whether or not the obtained
prediction values are useful estimations of the actual values we
carried out a cross validation, which means that the original data
set is divided into different subsets of training and validation sets.
Training sets are used to build models with LR and validation sets
are used to validate the obtained models. In particular, we
exploited a leave- one-out cross validation, which means that the
original data set is divided into n=8 different subsets (8 is the size
of the original data set) of training and validation sets, where each
validation set has one observation.

Evaluation criteria. The accuracy of the obtained estimations
was assessed by using summary measures MMRE, MdMRE and
Pred(l) [3], which have been widely used in empirical studies to
assess the accuracy of estimation models (see e.g., [7][10]). We
have calculated summary measures as described in the following.
The Magnitude of Relative Error can be defined as:
MRE = |CodeSizereal — CodeSizepredicted | / CodeSizereal (2)
where CodeSizereal and CodeSizepredicted are the actual and the

predicted amount of memory needed by an application,
respectively. MRE has been calculated for each observation in the
data set. All the MRE values were aggregated across all the data
points using the mean and the median, giving rise to the Mean of
MRE (MMRE) and the Median MRE (MdMRE).
The prediction at level l [3], defined as:

Pred(l) = p /n (3)
where p is the number of observations whose MRE is less than or
equal to l, and n is the total number of observations. Pred(l) is a
quantification of the percentage of predictions whose error is less
than l%. In the context of effort estimation, where these measures
were proposed [3], l is widely set to 0.25 and a good estimation
model should have a MMRE≤0.25 and Pred(0.25)≥ 0.75, that is,
the mean error should be less than 25%, and at least 75% of the
estimated values should fall within 25% of their actual values [3].
In the current study, which can be considered a preliminary
investigation, we decided to use l=0.25.

Threats to validity. The construct validity can be biased by the
collection of the information to determine the size measure. The
measurement task of the functional size is crucial. One of the
authors, with previous experiences in measuring software in terms
of COSMIC, performed the measurement task. A second
researcher cross-checked the information obtained. Reliability of
the data and lack of standardization should be taken into account
for the internal validity [9]. We did our best to collect information
in a uniform fashion. Instrumentation effects in general do not
occur in this kind of studies. As for the conclusion validity, we
carefully applied LR and the statistical tests, verifying all the
required assumptions. Another threat to conclusion validity could
be the few number of applications composing the data set.
However, observe that ``a rule of thumb in regression analysis is
that 5 to 10 observations are required for every variable in the
model'' [11]. Furthermore, our study can contribute to provide
useful indications to be further validated in subsequent studies.
So, other investigations should be performed to verify/confirm our
results, possibly with different kinds of mobile applications.

3.2 Results of the Study
In order to apply LR we first verified the normality of
distributions (i.e., of CFP and CodeSize). Furthermore, we
verified the assumptions underlying the application of LR:
linearity (i.e., the existence of a linear relationship between the
independent variable and the dependent variable);
homoscedasticity (i.e., the constant variance of the error terms for
all the values of the independent variable); residual normality
(i.e., the normal distribution of the error terms), and residual
uncorrelation (i.e., error terms are uncorrelated for consecutive
observations). The performed statistical tests revealed that the
residuals cannot be considered uncorrelated. Thus, we decided to
perform a log-transformation of the employed variables since it is
widely applied in this kind of studies (see e.g., [7][10]). We also
verified the presence of influential observations (i.e., extreme
values which might unduly influence the models obtained from
the regression analysis). As suggested in [10], we analyzed the
residuals plot and used Cook’s distance to identify possible
influential observations. No observation was removed.

Table 5 presents the results of the LR analysis with statistics on
useful indicators to verify the quality of the obtained models. We
can observe that the obtained model is characterized by a high R2
value (98%). Furthermore, a high F value (232.9) and a low p-
value (<0.01) were obtained, indicating that the prediction is
possible with a high degree of confidence. The t-values and p-

1635

values for the coefficient of CFP are greater than 1.5 and less than
0.05, respectively, meaning that CFP is a significant predictor
with a confidence of 95%. The Equation as read from the final
model’s output, when transformed back to the raw scale, is:

CodeSize = CFP1.836 · 0.302 (4)
Table 5. The results of LR using CFP and CodeSize

 Value Std.Err. t-value p-value
Coefficient of CFP 1.836 0.439 15.261 <0.01
Intercept -1.196 0.12 -2.275 0.034
 R2 Std.Err. F Sign. F
 0.975 0.125 232. 9 <0.01

To evaluate the accuracy of the obtained estimates we performed
a leave-one-out cross validation and computed the values of
MMRE, MdMRE, and Pred(0.25). The results are reported in
Table 6. We can conclude that CFP was a good indicator of the
mobile application code size, when used in combination with LR,
since the values of MMRE and MdMRE are lower than 0.25 and
the value of Pred(0.25) is greater than 0.75 (i.e., the thresholds of
Conte et al. [3] are satisfied).

Thus, we can positively answer our research question, i.e.,
“COSMIC measure can be used to estimate the mobile application
code size in kilobytes of compiled code”.

Table 6. Accuracy results

MMRE MdMRE Pred(0.25)
0.112 0.071 0.875

4. Conclusions and Future work
In this paper we applied the COSMIC measurement method to
calculate the functional size of mobile applications. This is one of
the first cases reported in the literature of application of that
method to mobile applications, a rapidly growing type of
applications that soon requires the use of suitable software
engineering processes, including functional size measurement and
estimation techniques, to improve their quality. As a matter of fact
the International Function Point User Groups (IFPUG) has
recently proposed a sort of guidelines for the application of
IFPUG FPA to mobile applications [16], [17] and some software
companies tried to apply it [18]. In the paper we report on the use
of COSMIC to 8 Android applications that allows us to derive a
sort of draft guidelines that can be used by software measurers.

Moreover, we have presented the result of an empirical study
performed to assess whether in the considered domain the
COSMIC functional size can be used to get early and accurate
code size predictions (in Kb). The study was based on 8 mobile
applications and a linear regression on their values was employed
to build the prediction models. The results of the validation
performed by applying a leave-one-out cross validation show that
accurate estimates were obtained taking into account some
thresholds widely used in the context of effort estimation.

As future work we intend to replicate the study with larger data
sets and considering also different mobile applications to
confirm/contradict the results achieved with the preliminary study
presented here. We also want to investigate about a possible
correlation between functional size and the RAM allocation
during execution of Android applications. The collection of effort
data could also be useful to derive effort/cost estimation models.
Finally, other size measurement approaches could be investigated
and compared with COSMIC.

5. REFERENCES
[1] Albrecht, A. Measuring Application Development

Productivity, Joint SHARE/GUIDE/IBM Application
Development Symposium, 83–92, 1979.

[2] Chatterjee, S., Simonoff, J. Handbook of Regression
Analysis. John Wiley & Sons, 2013.

[3] Conte, D., Dunsmore, H., and Shen, V. Software engineering
metrics and models. The Benjamin/Cummings Publishing
Company, Inc., 1986.

[4] COSMIC: The COSMIC Functional Size Measurement
Method, Guideline for Sizing Business Application Software,
Version 3.0, 2008.

[5] COSMIC: Guideline for ‘Measurement Strategy Patterns’,
Ensuring that COSMIC size measurements may be
compared, Version 1.0, 2013.

[6] COSMIC: The COSMIC Functional Size Measurement
Method, Measurement Manual, Version 4.0, 2014

[7] Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C.,
Mendes, E. Investigating the use of Support Vector
Regression for web effort estimation. Empirical Software
Engineering 16(2): 211-243, 2011.

[8] ISO/IEC, ISO/IEC 14143-1:2007: Information technology -
Software measurement - Functional size measurement - Part
1: Definition of concepts, International Organization for
Standardization, Geneva, Switzerland, 2007.

[9] Kitchenham, B., Pickard, L., Pfleeger, S. Case studies for
method and tool evaluation. IEEE Software, 12(4): 52–62,
1995.

[10] Kitchenham, B. A., Mendes, E. Software Productivity
Measurement Using Multiple Size Measures. IEEE Trans.
Software Eng. 30(12): 1023-1035 (2004).

[11] Kliijnen, J. Sensitivity Analysis and Related Analyses: A
Survey of Statistical Techniques. J. Statistical Computation
and Simulation, 57(1-4): 111-142, 1997.

[12] Lind, K., Heldal, R. A Practical Approach to Size Estimation
of Embedded Software Components. IEEE Trans. Softw.
Engin., 38(5): 993-1007, 2012.

[13] Lind, K., Heldal, R., Harutyunyan, T., Heimdahl, T.
CompSize: Automated Size Estimation of Embedded
Software Components. Conference on Software Process and
Product Measurement, 86-95, 2011.

[14] Lind, K., Heldal, R. Estimation of Real-Time Software Code
Size using COSMIC FSM. IEEE International Symposium
on Object/Component /Service-Oriented Real-Time
Distributed Computing, 244-248, 2009.

[15] Nitze, A., Measuring Mobile Application Size Using
COSMIC FP. DASMA Metrik Kongress, 11/2013.

[16] Preuss, T., Mobile Applications, Functional Analysis, and the
Customer Experience. In “The IFPUG Guide to IT and
Software Measurement”, (ed) Auerbach Publications, 2012.

[17] Preuss, T. Mobile Applications, Function Points and Cost
Estimating. International Cost Estimation & Analysis
Association Conference, 2013

[18] Sethumadhavan, G. Sizing Android Mobile Applications.
International Software Measurement and Analysis, 2011

1636

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

