
Investigating Functional and Code Size Measures
for Mobile Applications

Filomena Ferrucci, Carmine Gravino, Pasquale Salza
University of Salerno

{fferrucci, gravino, psalza}@unisa.it

Federica Sarro
University College London

f.sarro@ucl.ac.uk

Abstract—This paper investigates the use of the COSMIC
functional size measurement method for mobile applications.
Some proposals have been recently introduced to size mobile
applications in terms of COSMIC. In this work we empirically
analyse whether the COSMIC functional size of mobile applica-
tions can be exploited to estimate the size of the final applications
in terms of lines of code and number of bytes of the source
code and bytecode. To this end, we take into account a total
of 7 different code size measures collected from 13 Android
applications. The results of the empirical study show that the
COSMIC functional size is strongly correlated to all the size
measures taken into account and that it can be also used to
predict the mobile application size in terms of bytes with a high
accuracy.

Index Terms—functional size measurement, COSMIC, android
mobile application, code size measure, LOC, empirical study

I. INTRODUCTION

Functional Size Measurement (FSM) methods have been

widely investigated in software engineering research and also

used in industry to size software systems in terms of the

functionality provided to the users. They were introduced

to overcome the limitations of the Lines of Code (LOCs),

one of the most used size measure and the main input to

parametric software cost and effort estimation tools [1]. The

main issue with LOCs is that they are not available early

in the development process when effort/cost estimations are

needed. Differently, a functional size measurement method

can be applied to software requirements and the obtained

functional size can be exploited to estimate LOCs using

backfiring FSM/LOCs ratios based on earlier projects. Then,

the calculated LOCs can be used in the parametric software

cost models, e.g., COCOMO [2].

Among the FSM methods, the Function Point Analysis

(FPA) was the first to be introduced in 1979. Several variants

have been then proposed (know as 1st generation of FSM

methods) to improve the size measurement or extend its appli-

cation domain. COSMIC [3] is a 2nd generation FSM method,

being the first to comply to the standard ISO/IEC14143/1 [1].

It is based on fundamental principles of software engineering

and measurement theory, and it is conceived to be applicable

to business, real-time, and infrastructure software (or hybrids

of these) [3].

Recent studies have investigated the applicability of 1st and

2nd generation FSM methods to mobile applications [4]–[10].

This domain is growing faster and specific software engi-

neering processes, including functional size measurement and

estimation techniques [6], might be required to improve the

quality of these applications. The International Function Point

User Groups (IFPUG) has proposed guidelines for the appli-

cation of IFPUG FPA to mobile applications [7][8] and some

software companies have used them [9]. As for COSMIC,

three preliminary investigations to size mobile applications

have been reported in literature [4][5][10] focusing on the

measurement of mobile games apps [4], apps that use internal

data storage [5], and approximated measurement methods [10].

In this paper, we further analyse the use of COSMIC to

measure mobile applications by investigating (1) how it relates

to some size measures of the source and compiled code, (2)

if it can be used to predict the final application code size in

terms of LOCs or number of bytes of the source code and

bytecode. It is worth noting that the idea of estimating code

size in terms of bytes has been recently proposed by Lind and

Heldal [11] that presented a practical approach to estimate

the size of compiled C code of embedded applications. Their

study highlighted a better correlation between bytecode and

COSMIC size with respect to LOCs. They argued that this

was due to the fact that the compiler behaves always in the

same way by filtering differences in programming style (like

“condensed” programs with many operations per line, few

comments vs. only one operation per line, many comments).

They also encouraged further studies considering different

types of applications and from other domains in order to

conclude that bytes can be used as code size measure [12].

We conducted an empirical study on 13 Android mobile

applications that manage information exchanged with a persis-

tent storage inside the Android device. Thus, to measure their

COSMIC functional size we followed the guidelines provided

in [5]. The design of the study is summarised in Section II

while the results are presented and discussed in Section III.

Conclusions and future work close the paper.

II. THE EMPIRICAL STUDY DESIGN

To assess the relationship of the COSMIC functional size

with other size measures of the final mobile application

(source/byte) code, we investigated the following questions:

RQ1: Does COSMIC measure relate with code size mea-

sures for mobile applications?

RQ2: Can COSMIC measure be used to estimate code size

measures for mobile applications?

2015 41st Euromicro Conference on Software Engineering and Advanced Applications

978-1-4673-7585-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SEAA.2015.23

365

In the following, we provide details about the employed data

set, estimation technique, validation method, and evaluation

criteria. Threats that could affect the validity of the empirical

study are also discussed.

A. Data Set and Variables

The data set employed in this study includes 13 Android

mobile applications randomly downloaded from Google Play

Store. For each application one of the authors collected the

requirements in a Functional User Requirements (FURs) docu-

ment. Then, following the guidelines proposed by D’Avanzo et
al. [5], COSMIC was applied to the FURs document obtaining

the data movements summarized in Table I (where E, X, R, and

W denotes the number of Entry, Exit, Read, and Write data

movements obtained by applying COSMIC [3]). CFP is the

independent variable in our study and it denotes the number

of COSMIC Function Points characterizing an application.

Table I
FUNCTIONAL SIZE IN TERMS OF COSMIC

Descriptive
statistics

Data Movements
CFP

E X R W

Min 4.00 4.00 2.00 2.00 15.00
Max 39.00 52.00 32.00 22.00 145.00
Mean 15.23 18.38 7.92 7.77 49.31
Median 13.00 14.00 5.00 7.00 40.00
Std Dev 9.63 13.17 8.35 5.12 35.03

The information about the mobile application code sizes

considered in our empirical study is summarized in Table II.

Since in Android the Java code is mainly used to develop

functionalities, while XML is used to design the user interfaces

[13], we considered both Java and XML size, to analyse

apart the components constituting the interface of the mobile

apps. We did not measure any other raw asset files, such as

images or local database files, because they do not directly

relate to the application functionalities. We considered each

Java class involved (except for external libraries) and only

the XML layouts that are needed to visualize the application.

For example, we discarded those XML files that describe

additional resolutions for other devices, such as tablets, since

these are optimizations and do not describe functionalities. As

for the LOC, the variables JavaLOC, XMLLOC, and TotalLOC

represent the lines of code for the Java code, XML code, and

their sum, respectively. As for number of bytes, we considered

both the source and the compiled code. The variables JavakB,

XMLkB, and TotalkB represent the Java size, XML size, and

their sum in terms of kilobytes, respectively. The variable

BytecodekB denotes the size of the compiled code in terms

of kilobytes. The above measures were collected by using the

apps APK files downloaded from the official store; the code

size was measured with the “du” UNIX command and the

lines of code with the “CLOC” tool.

Table II
MOBILE APP CODE SIZES

Descriptive
statistics

Java XML Bytecode

kB LOC kB LOC kB

Min 19.00 473.00 12.00 167.00 23663.00
Max 322.00 7514.00 94.00 1695.00 272775.00
Mean 122.50 2786.58 42.33 590.67 111892.33
Median 91.50 2295.5 38.00 487.50 94298.50
Std Dev 96.85 2157.30 23.20 427.38 73823.36

B. Correlation Test and Estimation Technique

To assess (RQ1) the relationship among the indepen-

dent variable (i.e., CFP) and the dependent variables (i.e.,

JavakB, JavaLOC, XMLkB, XMLLOC, TotalkB, TotalLOC, and

BytecodekB) we applied the nonparametric association statis-

tics Spearman’s rho [14], which is widely employed in the

literature. This statistic ranges from +1 to −1, where +1
indicates perfect correlation and −1 indicates a perfect inverse

correlation, while 0 indicates no correlation.

Since we are also interested in verifying whether or not the

functional size of a mobile application can be exploited to

predict the corresponding code size expressed both in terms

of bytes and lines of code (RQ2), we verified the strength

of the relationship between each dependent variable described

in the previous section (e.g., TotalLOC) and the variable CFP,

by performing a Linear Regression (LR) analysis. To evaluate

the goodness of fit of a regression model, several indicators

can be considered. Among them, the square of the linear

correlation coefficient, R2, shows the amount of the variance

of the dependent variable explained by the model related to

the independent variable. Other useful indicators are the F

value and the corresponding p-value (denoted by Sign F),

which high and low values, respectively, denote a high degree

of confidence for the prediction. For all the statistical tests

performed, we decided to accept a probability of 5% of

committing a Type-I-Error [14].

C. Validation Method and Evaluation Criteria

To verify whether or not the obtained prediction values are

useful estimations of the actual values we carried out a cross

validation, which means that the original data set is divided

into different subsets of training and validation sets. Training

sets are used to build models with LR and validation sets

are used to validate the obtained models. In particular, we

exploited a leave-one-out cross validation, which means that

the original data set is divided into n = 13 different subsets

(13 is the size of the original data set) of training and validation

sets, where each validation set has one observation.

In order to establish whether the predicted size is a useful

estimation of the actual size we applied again the non-

parametric association statistics Spearmans rho, while to assess

the accuracy of the obtained estimations we exploited sum-

mary measures, namely MMRE, MdMRE and Pred (l) [15],

which have been widely used in empirical studies to assess the

accuracy of estimation models (see e.g., [16]). In the context of

effort estimation, where these measures were proposed [15], l

366

is widely set to 0.25 and a good estimation model should have

a MMRE ≤ 0.25 and Pred (0.25) ≥ 0.75, that is, the mean

estimation error should be less than 25%, and at least 75%
of the estimated values should fall within 25% of their actual

values [15]. In this study we used l = 0.25. In the future, we

will further analyse this point.

D. Threats to Validity

The construct validity can be biased by the collection of

the information used to determine the size measures. The

measurement task of the functional size is crucial. One of the

authors, with previous experiences in measuring software in

terms of COSMIC, performed the measurement task. Another

author cross-checked the information obtained. As for the

measurement of the code sizes, we manually inspect Java

classes and XML files to remove noisy content (e.g., third part

libraries). Reliability of the data and lack of standardization

should be taken into account for the internal validity [17][18].

We did our best to collect information in a uniform fashion.

Instrumentation effects in general did not occur in this kind

of studies. As for the conclusion validity, we carefully applied

the estimation method and the statistical tests, verifying all

the required assumptions. Another threat to conclusion validity

could be the few number of applications composing the data

set. However, observe that “a rule of thumb in regression

analysis is that 5 to 10 observations are required for every

variable in the model” [19]. Furthermore, this kind of studies

can contribute to provide useful indications that can be further

validated in subsequent studies. So, other investigations should

be performed to verify/confirm the results of our study, possi-

bly taking into account different kinds of mobile applications.

III. RESULTS OF THE STUDY

Table III shows the results achieved by applying the Spear-

mans rho test to answer RQ1. We reported the statistics and

the p-value of the test for each considered dependent variable.

The independent variable is CFP. We can observe that all

the employed code size measures are positively associated

with CFP. Furthermore, the results of the tests are statistical

significant as the p-values of the statistics reveal. This means

that when the value of the CFP increases, the value of the code

size measures (e.g., JavakB) increases as well. We can also

note that the dependent variables characterized by the highest

association with independent variable CFP is BytecodekB that

is the size in terms of bytes of the compiled code since

their Spearman’s rho statistics is 0.952. High value were also

obtained for TotalkB and TotalLOC that are the total code size

expressed in terms of bytes and lines of code, respectively.

The variables JavakB, JavaLOC, and XMLLOC also achieved

statistics greater than 0.85, while in only one case the statistics

is less than 0.8 (i.e., XMLkB).

According to the above results we can positively answer our

first research question: for the considered mobile applications

COSMIC measure well relates to the considered code size

measures.

Table III
CORRELATION AMONG THE INDEPENDENT VARIABLE AND EACH

DEPENDENT VARIABLE

Dependent
variable

Spearman

rho p-value

JavakB 0.905 < 0.001
JavaLOC 0.894 < 0.001
XMLkB 0.751 0.003
XMLLOC 0.872 < 0.001
TotalkB 0.922 < 0.001
TotalLOC 0.922 < 0.001
BytecodekB 0.952 < 0.001

To answer RQ2 we built size estimation models by ex-

ploiting LR. To this aim, we first verified the assumptions

underlying its application: linearity (i.e., the existence of

a linear relationship between the independent variable and

the dependent variable); homoscedasticity (i.e., the constant

variance of the error terms for all the values of the independent

variable); residual normality (i.e., the normal distribution of

the error terms), and residual uncorrelation (i.e., error terms

are uncorrelated for consecutive observations). It is worth

noting that we also verified the presence of influential ob-

servations (i.e., extreme values which might influence the

models obtained from the regression analysis) by using the

residuals plot and Cook’s distance. According to this analysis

no transformation of the original data was performed and no

observation was removed.

All the obtained models were characterized by a high R2

value, i.e., greater than 0.8 except for the model having

XMLLOC as dependent variable for which the value is very

close to 0.8 (i.e., 0.775). Furthermore, a high F value (except

for the model having XMLLOC as dependent variable) and a p-

value (Sign. F) less than 0.001 were obtained, indicating that

the prediction is possible with a high degree of confidence.

To evaluate the accuracy of the obtained estimates we

performed a leave-one-out cross validation and applied a

Spearman’s rho test to establish whether the predicted size

is a useful estimation of the actual size. The results of the

Spearman’s rho test are reported in Table ??. We can note that

the predicted size is always statistically positively correlated

with the actual size for all the considered size measures. Thus,

we can conclude that the obtained size prediction distributions

are a good indication of the actual size distribution.

We also computed the values of MMRE, MdMRE, and

Pred (0.25) (see Table V). We can observe that CFP was

a good indicator of the total code size in terms of bytes

for mobile application, since MMRE is very close to 0.25,

MdMRE is lower than 0.25, and Pred (0.25) is greater than

0.75 (i.e., the thresholds of Conte et al. [15] are satisfied).

In the other cases, MMRE values between 0.33 and 0.46
were obtained. However, the results achieved for the models

predicting JavakB, JavaLOC, TotalLOC, and BytecodekB are

quite interesting since MdMRE values less than 0.25 and

Pred (0.25) values close to 0.60 were obtained. The worst

results were obtained for the models predicting XMLkB and

367

Table IV
CORRELATION AMONG THE PREDICTED SIZE AND ACTUAL SIZE FOR EACH

CONSIDERED DEPENDENT VARIABLE

Size
in terms of

Spearman

rho p-value

JavakB 0.901 < 0.001
JavaLOC 0.890 < 0.001
XMLkB 0.720 0.003
XMLLOC 0.872 < 0.001
TotalkB 0.918 < 0.001
TotalLOC 0.945 < 0.001
BytecodekB 0.918 < 0.001

Table V
ACCURACY RESULTS

Dependent
Variable

MMRE MdMRE Pred (0.25)

JavakB 0.46 0.46 0.54
JavaLOC 0.43 0.24 0.54
XMLkB 0.43 0.29 0.31
XMLLOC 0.32 0.28 0.46
TotalkB 0.29 0.19 0.77
TotalLOC 0.35 0.20 0.62
BytecodekB 0.33 0.21 0.54

XMLLOC. Thus, we can conclude that CFP based model

provide better predictions when predicting Java size with

respect to XML size. Furthermore, when predicting the total

size (i.e., sum of the Java and XML size) in terms of bytes

the predictions are very good according to the considered

summary measures. The fact that the functional size allows

us to accurately predict the total code size suggests us that the

code that realizes the app functionalities and the one realizing

its interface are equally important for this kind of software.

Thus, as for the second research question we can state that

for the considered mobile applications, COSMIC measure can

be used to estimate the source code size in terms of bytes.

IV. CONCLUSIONS AND FUTURE WORK

We have applied the COSMIC measurement method to

calculate the functional size of 13 mobile applications by

exploiting some guidelines that can be used together with the

standard COSMIC measurement manual by software measur-

ers [5]. The functional size obtained in terms of COSMIC has

been used to predict some code size measures, namely LOCs

and bytes of source and compiled code. Overall, the result

of the study highlighted that, in the considered domain, the

COSMIC functional size can be used to get early and accurate

predictions of the size in terms of bytes, thus, confirming the

findings of Lind and Heldal [12][11].

To the best of our knowledge our study is one of the first

reported in literature on the application of COSMIC to mobile

apps. Previous work investigated the measurement of mobile

games [4], apps that do not store data in their application

layer [10], and apps that manage information exchanged with

a persistent storage inside the mobile device [5]. Future work

will compare the existing proposals to investigate whether

a unique/unified approach is suitable to measure different

kinds of apps, or different approaches are needed. As future

work we also intend to replicate this study with larger data

sets and considering different kind of mobile applications to

confirm/contradict the results reported in the present study.

Finally the collection of effort data could be useful to derive

effort/cost estimation models [20].

REFERENCES

[1] ISO/IEC, ISO/IEC 14143-1:2007: Information technology - Software
measurement - Functional size measurement - Part 1: Definition of
concepts, 2007.

[2] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II. Prentice Hall Press, 2009.

[3] A. Abran, D. Baklizky, J. Desharnais, P. Fagg, C. Gencel, C. Symons,
K. R. Jayakumar, A. Lesterhuis, B. Londeix, S.-I. Nagano, L. Santillo,
H. Soubra, S. Trudel, F. Vogelezang, and C. Woddward, The COSMIC
Functional Size Measurement Method, The Measurement Manual, Ver-
sion 4.0.1, 2014.

[4] N. A. S. Abdullah, N. I. A. Rusli, and M. F. Ibrahim, “Mobile game size
estimation: Cosmic fsm rules, uml mapping model and unity3d game
engine,” in IEEE Conference on Open Systems (ICOS), 2014.

[5] L. D’Avanzo, F. Ferrucci, C. Gravino, and P. Salza, “Cosmic functional
measurement of mobile applications and code size estimation,” in 30th
ACM/SIGAPP Symposium on Applied Computing (SAC), 2015.

[6] A. Nitze, A. Schmietendorf, and R. Dumke, “An analogy-based effort
estimation approach for mobile application development projects,” in
International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2014, pp. 99–103.

[7] T. Preuss, Mobile Applications, Functional Analysis, and the Customer
Experience. Auerbach Publications, 2012.

[8] ——, “Mobile applications, function points and cost estimating,” in
International Conference on Cost Estimation and Analysis Association,
2013.

[9] G. Sethumadhavan, “Sizing android mobile applications,” in 6th IFPUG
International Software Measurement and Analysis Conference (ISMA),
2011.

[10] H. van Heeringen and E. van Gorp, “Measure the functional size of a
mobile app: Using the cosmic functional size measurement method,” in
International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-
MENSURA), 2014.

[11] K. Lind and R. Heldal, “A practical approach to size estimation
of embedded software components,” IEEE Transactions on Software
Engineering, vol. 38, no. 5, pp. 993–1007, 2012.

[12] ——, “On the relationship between functional size and software code
size,” in ICSE Workshop on Emerging Trends in Software Metrics
(WETSoM), 2010.

[13] Google. (2015) Android developers guide. [Online]. Available:
https://developer.android.com/guide/index.html

[14] J. D. Gibbons, Nonparametric statistical inference. Marcel Dekker Inc.,
1986.

[15] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering
Metrics and Models. Benjamin-Cummings Publishing Co., Inc., 1986.

[16] B. Kitchenham and E. Mendes, “Software productivity measurement
using multiple size measures,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 12, pp. 1023–1035, 2004.

[17] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method
and tool evaluation,” IEEE Software, vol. 12, no. 4, pp. 52–62, 1995.

[18] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
sampling problem for app store mining,” in 12th Working Conference
on Mining Software Repositories (MSR), 2015.

[19] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices for
effort estimation,” IEEE Transactions on Software Engineering, vol. 32,
no. 11, pp. 883–895, 2006.

[20] L. Buglione, F. Ferrucci, C. Gencel, C. Gravino, and F. Sarro, “Which
cosmic base functional components are significant in estimating web
application development? A case study,” in International Conference on
Software Process and Product Measurement (IWSM-MENSURA), 2010,
pp. 205–224.

368

