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Abstract
Software benchmarks are only as good as the performance measurements they yield.
Unstable benchmarks show high variability among repeated measurements, which causes
uncertainty about the actual performance and complicates reliable change assessment. How-
ever, if a benchmark is stable or unstable only becomes evident after it has been executed
and its results are available. In this paper, we introduce a machine-learning-based approach
to predict a benchmark’s stability without having to execute it. Our approach relies on 58
statically-computed source code features, extracted for benchmark code and code called by
a benchmark, related to (1) meta information, e.g., lines of code (LOC), (2) programming
language elements, e.g., conditionals or loops, and (3) potentially performance-impacting
standard library calls, e.g., file and network input/output (I/O). To assess our approach’s
effectiveness, we perform a large-scale experiment on 4,461 Go benchmarks coming from
230 open-source software (OSS) projects. First, we assess the prediction performance of
our machine learning models using 11 binary classification algorithms. We find that Ran-
dom Forest performs best with good prediction performance from 0.79 to 0.90, and 0.43
to 0.68, in terms of AUC and MCC, respectively. Second, we perform feature importance
analyses for individual features and feature categories. We find that 7 features related to
meta-information, slice usage, nested loops, and synchronization application programming
interfaces (APIs) are individually important for good predictions; and that the combination
of all features of the called source code is paramount for our model, while the combina-
tion of features of the benchmark itself is less important. Our results show that although
benchmark stability is affected by more than just the source code, we can effectively uti-
lize machine learning models to predict whether a benchmark will be stable or not ahead of
execution. This enables spending precious testing time on reliable benchmarks, supporting
developers to identify unstable benchmarks during development, allowing unstable bench-
marks to be repeated more often, estimating stability in scenarios where repeated benchmark
execution is infeasible or impossible, and warning developers if new benchmarks or existing
benchmarks executed in new environments will be unstable.
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1 Introduction

Software benchmarks are a performance testing technique on the same granularity as unit
tests, i.e., they test functions, methods, or statements. Different from unit tests, they measure
performance, most often execution time, by executing the benchmark repeatedly to retrieve
reliable results. Depending on a myriad of factors, such as the quality of the benchmark, the
stability of the execution environment, the programming language, and the source code the
benchmark calls, these measurements are close to each other, i.e., the benchmark has low
result variability and is “stable”, or further apart, i.e., the benchmark has high result variabil-
ity and is “unstable”. Results from unstable benchmarks do not accurately reflect the “true”
performance of the software (unit) under test and hinder rigorous and reliable performance
change assessment. Unfortunately, this only becomes evident once the benchmark has been
executed and its results are available.

Previous research on software performance focussed on performance impact prediction
of new code changes on the execution time of software, i.e., whether a code change slows
down (or speeds up) the program. They often leverage statically or dynamically determined
source code features, such as added loops or method calls, the code change diff, and some-
times profiling data, to predict whether a benchmark or a version is likely to experience a
performance change (Jin et al. 2012; Huang et al. 2014; Sandoval Alcocer et al. 2016; de
Oliveira et al. 2017; Mostafa et al. 2017; Alshoaibi et al. 2019; Sandoval Alcocer et al. 2020;
Chen et al. 2020). This information is then used for selecting which versions to test for per-
formance (Jin et al. 2012; Huang et al. 2014; Sandoval Alcocer et al. 2016, 2020), selecting
the benchmarks to execute after a code change (de Oliveira et al. 2017; Alshoaibi et al. 2019;
Chen et al. 2020), prioritizing the benchmarks with larger predicted performance changes
for execution (Mostafa et al. 2017), or identifying functional tests to use as performance
tests (Ding et al. 2020). All of these focus on slowdown/speedup size as the performance
property to predict, and none considers measurement variability or benchmark stability.
Moreover, the majority employs traditional inference techniques such as rule-based detec-
tion (Jin et al. 2012), cost models (Huang et al. 2014; Sandoval Alcocer et al. 2016; Mostafa
et al. 2017; Sandoval Alcocer et al. 2020), heuristics (de Oliveira et al. 2017), or genetic
algorithms (Alshoaibi et al. 2019), and only two utilize machine learning models (Chen
et al. 2020; Ding et al. 2020).

In this paper, we propose an approach that leverages static source code features to pre-
dict whether a benchmark will be unstable before executing it. The approach employs 58
source code features extracted with abstract syntax tree (AST) and static call graph (CG)
information, each feature once for the benchmark’s code and once for the code called
by the benchmark, resulting in a total of 116 features. They consist of (1) meta infor-
mation, e.g., lines of code (LOC), (2) programming language elements, e.g., conditionals
or loops, and (3) potentially performance-impacting standard library calls, e.g., file and
network input/output (I/O). To assess our approach, we perform a large-scale experiment
on 4,461 benchmarks coming from 230 open-source software (OSS) projects written in
Go.
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In our first research question, we investigate the performance of binary classifiers that
predict whether a benchmark is stable on unstable:

RQ 1 Can we predict benchmark instability with statically-computed source code features?

We build a static model based on the source code features and assess the prediction
performance among 11 classification algorithms. For this, we transform the benchmarks’
variability into two classes, i.e., stable and unstable, relying on thresholds inspired by pre-
vious work (Georges et al. 2007; Curtsinger and Berger 2013). We compare the different
machine learning algorithms and find that their models are effective. Random Forest per-
forms best with a prediction performance ranging from 0.79 to 0.90 AUC and from 0.43 to
0.61 MCC.

Our classification model considers benchmarks to be stable or unstable if they fall
beneath or above a certain threshold. We study how the threshold value impacts prediction
performance with our first sub research question:

RQ 1.1 How does the prediction performance change when the model is trained with
different stability thresholds?

Inspired by previous work (Georges et al. 2007; Curtsinger and Berger 2013), we inves-
tigate four stability thresholds t ∈ {1%, 3%, 5%, 10%}, which correspond to t% benchmark
variability. We find that the threshold t impacts prediction performance. Algorithms trained
with the largest threshold t = 10% deliver the best prediction performance in most cases.
This shows that our model is better at classifying benchmarks as unstable if they have higher
result variability, i.e., they are “more unstable”.

The number of measurement iterations, i.e., repetitions, directly influences the bench-
mark stability, i.e., more iterations lead to narrower confidence intervals and, consequently,
to a more stable benchmark. Our second sub research question investigates their impact on
the prediction performance of our model:

RQ 1.2 How does the prediction performance change when the model is trained on
benchmark executions with different numbers of iterations?

We study four numbers of repeated iterations i = {5, 10, 20, 30} and find that the number
of iterations drastically impacts the prediction performance of our model. Measurements
from more iterations lead to better prediction performance for the majority of the studied
algorithms. This shows that our model is better at predicting benchmark instability if a
benchmark remains unstable with an increased number of iterations.

With our third sub research question, we study the impact of pre-processing steps on the
prediction performance of our model:

RQ 1.3 How does the prediction performance change when removing co-linear and multi-
co-linear features and applying class-rebalancing?

We apply AutoSpearman (Jiarpakdee et al. 2018), a sophisticated technique to remove
co-linear and multi-co-linear features, and SMOTE (Chawla et al. 2002), which performs
class-rebalancing. We find that, across all studied classifiers, their application neither
improves nor deteriorates the model’s prediction performance. In the case of Random
Forest, however, AutoSpearman improves MCC and AUC by 0.023 and 0.005, respectively.
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Our fourth sub research question studies the impact of different measures of variability
on prediction performance:

RQ 1.4 Do different variability measures have an impact on the prediction performance?

In the previous experiments, we employ the relative confidence interval width (RCIW)
based on Maritz-Jarrett’s technique (Maritz and Jarrett 1978), i.e., rciwmjhd , as variabil-
ity measure (i.e., dependent variable) to estimate a benchmark’s instability. This research
question investigates if the prediction performance changes for other variability measures.
We compare rciwmjhd to relative confidence interval width (RCIW) based on boot-
strap (Kalibera and Jones 2012), i.e., rciwboot , and relative median absolute deviation
(RMAD) (Arachchige et al. 2020), i.e., rmad. The results show that the prediction perfor-
mance varies considerably. In the case of Random Forest, MCC increases by 0.08 and 0.11,
when using rciwboot and rmad, respectively.

Finally, with our second research question, we study the importance of individual
features and feature categories when building the models:

RQ 2 Which are the most important individual features and feature categories for good
prediction performance?

We consider the best performing model from RQ 1, i.e., Random Forest built with 30 iter-
ations and a 10% threshold. We find that only 7 features are individually important for good
predictions. Furthermore, the features concerning the called source code are collectively
most important.

Although benchmark stability is affected by more than just source code, our results
show that source code features can be effectively used to predict whether a benchmark will
be stable or unstable. We envision that this stability prediction can be used in regression
benchmarking for selecting only stable benchmarks to be executed, supporting developers
to identify unstable benchmarks during development, configuring unstable benchmarks to
run more iterations, estimating benchmark stability in scenarios where repeated benchmark
execution is infeasible or impossible, or warning developers if new benchmarks or existing
benchmarks executed in new environments will be unstable.

Contributions. The main contributions of this paper can be summarized as follows:

– an approach to extract statically-computable features from benchmark source code and
predict whether the benchmark will be unstable using machine learning algorithms;

– a study comparing the predictive performance of 11 machine learning algorithms,
investigating the effects of different stability definitions, benchmark iterations, pre-
processing steps, and variability measures;

– a study of the importance of individual features and feature categories for good
prediction performance;

– a large data set of 4,461 Go benchmark executions from 230 OSS projects.

We provide all data and scripts to reuse our approach and replicate our study
online (Laaber et al. 2021).

Paper Organization. In Section 2, we provide an introduction to benchmarking in Go and
benchmark stability. Section 3 introduces our approach, how it extracts the features, how
we define benchmark stability, what is required for the model creation, and how to use the
model. Section 4 describes the study design to assesses the effectiveness of our approach.
Sections 5 and 6 report the results for RQ 1 and RQ 2, respectively. In Section 7, we discuss
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Fig. 1 Benchmarking workflow in Go. Benchmark1 corresponds to the benchmark
call test.go/BenchmarkNativeCallWithString from the project robertkrimen/otto

application scenarios and other aspects of our approach, as well as directions for future
research. Section 8 discusses threats to validity, and Section 9 compares to related work.
Finally, we conclude the paper in Section 10.

2 Software Benchmarks in Go

Software benchmarking—also referred to as microbenchmarking (Laaber and Leitner 2018;
Laaber et al. 2019) or performance unit testing (Horký et al. 2015; Stefan et al. 2017;
Bulej et al. 2017a)—is a form of measurement-based software performance engineering
(SPE) (Woodside et al. 2007) to evaluate the performance, usually execution time, of fine-
granular software components such as functions, methods, or statements. They can be
considered as the equivalent of unit tests for performance.

The Go programming language1 comes with a benchmarking framework included in
their standard library, as part of the testing framework.2 Figure 1 depicts a schematic view
of Go benchmarks, how they are defined and executed, and what their results look like.

Definition. In Go, benchmarks are defined as top-level functions in source code, similar to
unit tests, if (1) they are placed in a file ending in test.go, (2) their name starts with

1https://golang.org
2https://golang.org/pkg/testing
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Benchmark, and (3) their only function parameter is of type *testing.B. A bench-
mark’s body also contains a for loop that repeatedly invokes the component that should be
benchmarked.

Execution. A single measurement is not sufficient to accurately depict a program’s per-
formance, because a myriad of factors influences performance measurements, such as the
machine they are executed on, the software (versions) installed, and the programming
language characteristics. Consequently, performance measurements (and benchmarks) are
susceptible to measurement uncertainty (Mytkowicz et al. 2009; Curtsinger and Berger
2013; de Oliveira et al. 2013), which is addressed with repeated measurements.

To execute benchmarks, such as the one previously defined, one uses the go com-
mand line interface (CLI), specifying which benchmark(s) to execute (through the use
of the -bench option), and for how many iterations (-count). An iteration (in) is
the repeated invocation of the benchmark function, Benchmark1 in our example, for
a defined duration (-benchtime). The benchmarking framework measures the runtime
(with nanosecond precision) of every benchmark invocation and yields the average runtime
among all invocations as the iteration’s result.

Results. The final result of a benchmark is the distribution of all iteration measurements,
which typically does not follow a normal distribution but is often long-tailed or multi-
modal (Curtsinger and Berger 2013; Maricq et al. 2018). Depending on the variability (or
spread) among the individual iteration results, a benchmark is considered more or less sta-
ble when it has low or high measurement variability, respectively. Running more iterations
leads to narrower confidence intervals of the results and, hence, to more stable benchmark
results (see Section 3.2). Figure 2 shows an example of real-world benchmark results with
low (“stable”) and high (“unstable”) variability after 20 iterations.

3 Approach

To predict whether a benchmark will be unstable without executing it, we introduce an
approach based on machine learning. This approach employs only statically-computed
source code features to build a binary classification model used for prediction. Although our

Fig. 2 Benchmarks with stable and unstable results after 20 iterations (indicated by the dots). The bar indi-
cates the median, the diamond the mean, the box the IQR, and the whiskers [Q1|Q3] + 1.5 ∗ IQR. The
“stable” benchmark is call test.go/BenchmarkNativeCallWithString from robertkrimen/otto. The “unstable”
benchmark is frame pool b test.go/BenchmarkFramePoolChannel1000 from uber/tchannel-go
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approach’s general idea is applicable to different programming languages, in particular, the
types of source code features employed, this section describes the approach in the context
of Go.

Our approach is based on two main phases: (1) training and (2) usage. During the
training phase, depicted in Fig. 3, our aim is to build a model based on real benchmark
executions. Starting from a possibly large sample of benchmarks, we first extract the
statically-computed source code features for each of these. Then, we run the benchmarks for
multiple independent executions (iterations) to obtain a measure for their stability, based on
the variability among the iterations. To decide whether a benchmark is “stable” or “unsta-
ble”, we perform “binarization” on the benchmarks’ result variability values. Section 7
discusses binary classification versus regression in this context. Based on the extracted
source code features and the benchmark stabilities, we train a model using a machine learn-
ing algorithm. We investigate the best algorithms for this prediction task in Section 5 and the
most important features for the best performing algorithm in Section 6. The trained model
can then, for example, be “used” to predict whether a new benchmark executed in the same
environment or an existing benchmark to be executed in a different environment will be
stable or unstable, before executing it.

3.1 Source Code Features

The main idea is to employ source code features that serve as a proxy for performance vari-
ability, even if the actual root cause lies outside of the source code, such as the underlying
operating system or the network. The choice of features is inspired by previous research that
investigated the root causes of performance failures.

To build our approach’s prediction model, we statically determine its features by (1)
extracting these on a per-function basis through AST parsing, (2) identifying these asso-
ciated just with the benchmarks’ source code, and (3) combining these belonging to all
the reachable functions from each benchmark with CG information. Table 1 provides an

Fig. 3 Training phase of the approach
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Table 1 Source code features of our approach. The Go code in green indicates the source code elements
considered for the corresponding feature. All features are extracted for the benchmarks source code and for
the code called by the benchmarks
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Table 1 (continued)

Type Category Name Description Go Code

overview of the 58 different features. Note that these 58 features occur once for the bench-
marks’ source code and once for the code called by the benchmarks, bringing the total
number of features to 116.

The benefit of employing static over dynamic features is that it enables our approach to
be utilized in scenarios where executing benchmarks is not possible or inopportune, such
as during the development of benchmarks in the integrated development environment (IDE)
or upon pushing to a version control system (VCS) to provide static analysis warnings to
developers. The importance of feature categories and individual features for the prediction
model are objects of investigation in Section 6.

3.1.1 Feature Extraction

Features are elements of the source code that can be extracted from a project’s source code
(files). Our approach considers three kinds of source code elements: (1) meta information,
e.g., number of LOCs or files; (2) language elements, e.g., loops, conditionals, or variables;
and (3) calls to standard library application programming interfaces (APIs) which “might
affect” benchmark stability. We encode a feature as the number of occurrences of these
source code elements in a function, e.g., the number of if branches or calls to a random
number generator. We introduce our approach’s features in the following and provide the
rationale why they are promising for identifying unstable benchmarks.

Meta Information. Meta information features are language-agnostic and do not (neces-
sarily) require complicated AST parsing but are potentially useful approximations for
performance variability. Our approach considers meta information features on (1) file and
(2) function granularity level. File meta information features assume that functions that are
part of larger packages (pkgfiles) or contained in longer files (fileloc) invoke more and more
diverse functionality. Similarly, longer functions (loc) and longer function names (name-
len) might be indicative of more complex functionality. The suspected consequence is that
benchmarks calling functions which follow these behaviours potentially have higher result
variability and, therefore, are less stable. Such meta-information features have recently been
successfully employed in prediction models for performance properties (Chen et al. 2020).

Language Elements. Similar to other works that build performance impact models based
on source code (Huang et al. 2014; Mostafa et al. 2017; de Oliveira et al. 2017; Alshoaibi
et al. 2019; Chen et al. 2020; Ding et al. 2020), we extract source code elements that require
inter-procedural AST parsing. Our approach considers language element features falling
into three main categories: (1) control flow elements, (2) variables and data types, and (3)
concurrency elements.
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Control flow elements comprise programming language features such as conditionals
(ifs, switches, and switchcases), loops (loops and nestedloops), function lifecycle (funccalls,
rets, and defers), exception handling (panics and recovers), and cyclomatic complexity (cc).
More of these directly contribute to the increased complexity of a function which in turn
might have a negative impact on benchmark variability. Moreover, research has often iden-
tified loops as root cause of performance problems (Jin et al. 2012; Sandoval Alcocer and
Bergel 2015; Selakovic and Pradel 2016; Chen and Shang 2017; Zhao et al. 2020); and
all of these control flow elements have recently been employed in machine-learning-based
prediction of performance changes (Chen et al. 2020; Ding et al. 2020).

Data features could have an impact on a function’s stack size, because Go stacks are
initially 2kB and can dynamically grow (Go Authors 2020a). Benchmarks might encounter
more result variability due to dynamically growing stacks. The other potential impact is
frequent garbage collector (GC) activity. More variables (vars), pointers (ptrs), and built-
in dynamic data structures (slices and maps) could increase pressure on the GC, caused by
more allocated (and then reclaimed) heap memory objects (Hudson 2018). Also, research
found that complex data structures and collections are often expensive to handle and require
more resources (Huang et al. 2014; Chen and Shang 2017; Costa et al. 2017), which could
impact benchmark variability.

Finally, Go has built-in support for concurrency in form of lightweight user-level threads
(goroutines), channels as communication primitives among goroutines, and channel com-
munication through sending and receiving messages as well as non-deterministic selection
among multiple channel operations (Go Authors 2020b). These concurrency features are
often used in real-life Go programs (Dilley and Lange 2019) and a potential cause for
benchmark instability due to the inherent non-determinism of thread schedulers. Also,
research found that performance failures often stem from concurrency and synchronization
issues (Jin et al. 2012; Alam et al. 2017; Chen and Shang 2017; Zhao et al. 2020).

Library Calls. Standard library packages encapsulate behaviour that are essential for all
programs. They enable file and network I/O, communication with the underlying operat-
ing system (OS), text or string processing, and concurrency primitives. As most of these
functionalities rely on or are backed by non-deterministic behaviour; e.g., waiting for locks
to become available, blocking on I/O, sending and receiving data over the network; calls
to standard library APIs might affect performance variability more than “regular” function
calls. Furthermore, inefficient or wrong application programming interface (API) calls as
well as concurrency and synchronisation have been identified as root causes of performance
bugs (Jin et al. 2012; Sandoval Alcocer and Bergel 2015; Selakovic and Pradel 2016; Alam
et al. 2017; Chen and Shang 2017; Zhao et al. 2020). We assume that these calls can serve
as proxies for benchmark stability to statically identify unstable benchmarks, without exe-
cuting them. Hence, we encode standard library calls as individual source code features
aggregated on package-level, i.e., all calls to a particular package contribute to the same
package-level feature. Table 2 depicts the Go standard library features used by our approach,
and the bottom row in Table 1 shows their source code representation.

3.1.2 Feature Combination

Source-code-induced benchmark variability is not only determined by the benchmark’s
body but also the source code it invokes. Consequently, we need to combine the
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Table 2 Standard library call features

Package Category Description

bufio io buffered I/O

bytes bytes manipulating byte slices

crypto bytes cryptographic types and constants

database/sql io generic interfaces for SQL databases

encoding bytes interfaces for byte to text conversions

encoding/binary bytes binary encodings

encoding/csv bytes CSV encoding and decoding (RFC 4180)

encoding/json bytes JSON encoding and decoding (RFC 7159)

encoding/xml bytes XML 1.0 parser

io io I/O interfaces and primitives

io/ioutil io I/O utility functions

math math basic mathematical functions

math/rand math pseudo-random number generators

mime io (partial) MIME implementation

net io network I/O including TCP, UDP,
domain name resolution, and Unix
sockets

net/http io HTTP client and server implementation

net/http/httptest io HTTP testing utility functions

net/http/httptrace1 io tracing of HTTP requests

net/http/httputil io HTTP utility functions

net/rpc io RPC client and server implementation

net/rpc/jsonrpc io JSON codec for net/rpc (JSON-RPC 1.0)

net/smtp io SMTP implementation (RFC 5321)

net/textproto io text-based request/response protocol

os os platform-independent interface to OS functionality

os/exec os running external commands/processes

os/signal os signals from the OS (e.g., SIGKILL)

sort bytes sorting of slices and user-defined collections

strconv bytes string conversions to/from primitives

sync concurrency synchronization primitives (e.g., mutexes)

sync/atomic concurrency low-level atomic memory primitives

syscall os interface to low-level OS primtives

1net/http/httptrace is not present in the evaluation of our approach, because no study object uses the package

previously described source code features for all functions a benchmark calls. To go from
intra-procedural source code features to inter-procedural ones, we employ static CGs rooted
at every benchmark and aggregate the source code features of all reachable functions by
summing up their values. Note that for the features of the benchmark’s source code no com-
bination is necessary, as the final feature values correspond to the extracted feature counts
of the benchmark’s body. The “Features of Called Source Code” block in Fig. 3 visualizes
the feature combination process.
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We rely on the callgraph3 tool which is part of the official extended Go distribution.
It constructs static CGs through inclusion-based points-to analysis using Andersen’s algo-
rithm (Andersen 1994), which is the most precise algorithm available. The algorithm can
be classified as (1) inclusion-based, which includes all the potential call targets, e.g., all
implementations of an interface; (2) flow-insensitive, which ignores all the control-flow
constructs and statement order; (3) field-sensitive, which builds separate points-to sets for
distinct fields, e.g., in a struct; (4) context-insensitive for most functions and only context-
sensitive for small functions, i.e., which does or does not consider the calling context,
respectively; (5) having a context-sensitive heap, where different objects of the same type
are distinguished based on the allocation site and calling context; and (6) a whole pro-
gram analysis, which requires an intermediate representation (IR) for the complete program
in static single assignment (SSA) form. Hind (2001) provides a more detailed description
of these classification terms. Finally, the algorithm is fully sound unless the program uses
reflection (reflect package), performs unsafe.Pointer conversions, or calls native
code.

3.2 Benchmark Stability

Our approach uses the benchmarks’ result variability as its measure for stability. This
requires performance measurements from repeated benchmark executions, i.e., iterations
i (see Section 2). Any measure of variability can be plugged into our approach. Such a
measure computes the variability across all the iterations of a benchmark. To make the
result variabilities comparable across different benchmarks, the measure should normalize
the variability. This normalization can be performed by dividing the variability value by an
aggregate value, such as the arithmetic mean or the median of the measurement iterations.
The normalized variability value is continuous, ranging from 0 (no variability) to theoreti-
cally +∞ (infinite variability). Typical measures are the relative confidence interval width
(RCIW) or the median absolute deviation (MAD) divided by the median, thereafter called
relative median absolute deviation (RMAD). Note, because performance data is usually not
normally distributed, i.e., long-tailed or multi-modal (Curtsinger and Berger 2013), we can
not use variability measures that assume a normal distribution, such as the coefficient of
variation (CV).

The final step for defining the stability of a benchmark is binarization, which transforms
the benchmarks’ result variabilities into the binary classes stable or unstable based on a
defined threshold. For example, if we consider performance test case (benchmark) selection
of only stable benchmarks, the exact variability value is secondary as a binary answer, i.e.,
whether to select or not, is sufficient. We consider a benchmark to be stable if its result
variability is below a certain threshold t and unstable otherwise. A threshold t is provided
in percentages. For example, if t is 3%, binarization assign the class stable if the result
variability is in [0, 0.03), and unstable otherwise.

The variability measure, number of iterations, and threshold are approach parameters and
objects of investigation in Section 5.

3.3 Model Creation

The final part of the training phase of our approach consists of using the source code features
and benchmark stabilities to create a machine learning model.

3https://pkg.go.dev/golang.org/x/tools/cmd/callgraph

114    Page 12 of 53

https://pkg.go.dev/golang.org/x/tools/cmd/callgraph


Empir Software Eng (2021) 26:  11�

We first pre-process the data to ease the prediction task, by applying standardization
and variance-based feature selection at minimum. These operations are solely based on the
independent variables, i.e., the source code features. Additional pre-processing steps can
be added if desired or necessary. Note that these operations are based on the data used for
training: the variance is computed during the training of the model and needs to be stored
together with the model in order to pre-process the data during the usage.

The second step is training a machine learning model. As the benchmark stabilities are
binary classes, i.e., stable or unstable, any binary classification algorithm can be used to
create the model. Our approach assigns the class 0 to stable and 1 to unstable bench-
marks. Consequently, the main objective is to identify unstable benchmarks, and the model
is trained accordingly. This is similar to defect prediction where defective modules, classes,
or functions are the prediction goal, and we expect a similar imbalance between stable and
unstable benchmarks (Turhan et al. 2009; Zimmermann et al. 2009).

The classification algorithm and more sophisticated pre-processing steps are objects of
investigation in Section 5.

3.4 Model Usage

Once the model is created, it can be used to predict a benchmark’s (in)stability.
Specifically, the process requires the following steps, also depicted in Fig. 4:

(1) the new benchmarks are processed by using the same source code feature extraction
as in the training phase;

(2) we apply the pre-processing operations, i.e., standardization and feature selection, by
using the variance values computed and features selected during the training phase; and

(3) we use the pre-processed data as input to the binary classification model to predict the
benchmark stability.

As explained above, the model will give an answer for the definition of stability with
which it has been trained, therefore depending on the used variability measure, number of
iterations, and threshold.

4 Study Design

We perform a laboratory experiment (Stol and Fitzgerald 2018) to assess the prediction per-
formance of the approach’s machine learning model and study the importance of individual
features and feature categories. The experiment utilizes 230 OSS projects written in Go

Fig. 4 Usage phase of our approach
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having 4,461 unique benchmarks. A replication package containing all data and scripts as
well as additional data not presented in this paper is available online (Laaber et al. 2021).

4.1 Research Questions

In the context of the study, we formulate the following research questions.

RQ 1 Can we predict benchmark instability with statically-computed source code fea-
tures?

First, we want to assess the performance of a binary classification model to predict
whether a benchmark will be stable or unstable. This model is built using the static source
code features outlined in Section 3.1.

RQ 1.1 How does the prediction performance change when the model is trained with
different stability thresholds?

The definition of benchmark stability relies on the threshold t , which divides the contin-
uous value of the benchmark variability into two binary classes, i.e., stable and unstable. We
want to study whether and to what degree training the model on different stability thresholds
t impacts prediction performance.

RQ 1.2 How does the prediction performance change when the model is trained on
benchmark executions with different numbers of iterations?

The benchmark variability is directly affected by the number of repeated measurements,
i.e., iterations i, a benchmark is executed for; more iterations result in a reduced measured
variability (see Section 2). We want to investigate whether and to what degree training the
model on different numbers of iterations i impacts prediction performance.

RQ 1.3 How does the prediction performance change when removing co-linear and multi-
co-linear features and applying class-rebalancing?

Our approach performs simple pre-preprocessing steps on the features, i.e., scaling and
removing these that have low variance. This research question investigates whether and to
what degree more sophisticated pre-processing steps impact the models’ prediction per-
formance. In particular, it assesses the impact of two often-used pre-processing steps: (1)
removal of co-linear and multi-co-linear features and (2) class-rebalancing.

RQ 1.4 Do different variability measures have an impact on the prediction performance?

Performance result variability can be computed with different variability measures; dif-
ferent measures might lead to different outcomes whether a benchmark is stable or unstable.
As a consequence, our approach’s model could experience varying prediction performance.
We want to study the impact of different variability measures.

RQ 2 Which are the most important individual features and feature categories for good
prediction performance?

It is unlikely that all of the 116 features are equally important for good predictions. We
want to understand which individual features and feature categories contribute most to a
model’s prediction performance.
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4.2 Study Objects

We focus our study on benchmarks written in Go. Go statically compiles to machine
code, which helps to increase benchmark stability compared to dynamically compiled lan-
guages such as Java (Laaber and Leitner 2018). By studying a statically compiled language,
our experiment design removes the non-deterministic factor dynamic compilation and,
therefore, increases reliability of the benchmark result, which increases internal validity.

We follow an approach outlined by Stefan et al. (2017) to mine GITHUB repositories
through GITHUB’s search API. The search considers all projects that use Go as one of
their languages and contain at least one benchmark (see Section 2). This results in 10,707
projects.

As executing performance tests is a costly endeavor (Huang et al. 2014), it would be
infeasible to execute all projects. Our sampling strategy’s goal is to reduce the overall exper-
iment execution time and to filter out “toy” projects. Therefore, we apply the following
inclusion criteria to each project: (1) > 50 commits, (2) > 1 authors, (3) not a fork of
another repository, (4) > 1 stars, (5) > 1 watchers, (6) > 5 benchmarks, (7) > 1,000 LOCs,
and (8) a benchmark suite execution time of at most 2 hours. From the 10,707 projects, 483
adhere to our selection criteria.

We (try to) execute all of these for 2 hours but due to compilation or runtime errors many
projects fail, so that we end up with a final data set containing 4,461 individual benchmarks
belonging to 230 projects. To the best of our knowledge, this is the most extensive data set
of Go OSS projects with benchmarks and their execution results. We provide the full list
of projects, including their commit hashes, as part of our replication package (Laaber et al.
2021).

4.3 Execution Setup

In order to reduce confounding factors influencing the performance measure-
ments (Mytkowicz et al. 2009; Curtsinger and Berger 2013; de Oliveira et al. 2013) and
consequently our approach’s definition of benchmark stability, we execute all benchmarks
in a controlled bare-metal environment. The setup consists of four machines with a Intel(R)
Xeon(R) central processing unit (CPU) E5-2620 v4 @ 2.10GHz with 8 cores, 20MB cache,
and 64GB random-access memory (RAM). We disabled hyper-threading, frequency scal-
ing, and Intel’s TurboBoost. As OS the machines use Fedora Linux 24, and measurements
were taken in the period between November and December 2017. The benchmarks are com-
piled and run with Go 1.9.2. Every benchmark is executed for a 1 second duration (which
is the default in Go at the time of execution) as often as possible and the average runtime is
reported, which corresponds to one iteration. 97.4% of the benchmarks in our dataset have
an average runtime below 1ms, which correspond to more than 1,000 executions per iter-
ation. The benchmark suite of each project is repeatedly executed for 2 hours, resulting in
multiple iterations i per benchmark.

4.4 Benchmark Stability Parameterization

The benchmark stability serves as our approach’s dependent variable, which comes with a
few knobs for parameterization. The concrete parameterization can have an impact on our
study and, consequently, on the conclusions drawn from it. In the following, we outline
the parameter values used in our study for the (1) number of benchmark iterations, (2)
variability measure, and (3) binarization threshold.
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4.4.1 Number of Benchmark Iterations

To study the impact of the number of iterations i on the prediction performance in RQ 1.2,
we perform all analyses with multiple numbers of iterations. Previous research has shown
that Go benchmarks are experiencing less result variability than Java benchmarks (Laaber
and Leitner 2018). This is likely due to Go being a statically compiled and linked language
as opposed to dynamically compiled like Java. By default Go benchmarks are only executed
with a single iteration, but in order to follow performance engineering best practice (Georges
et al. 2007) and to be able to compute a benchmark’s variability (variability can not be com-
puted from a single measurement iteration), we choose i ∈ {5, 10, 20, 30}. These values are
in line with best practice, i.e., Georges et al. (2007) suggest 30 iterations, and cover a range
that previous research used for their performance measurements. For example, 5 iterations
are used by Blackburn et al. (2004), Jangda et al. (2019), and Mühlbauer et al. (2020); 10
iterations are used by Selakovic and Pradel (2016), Song and Lu (2017), and Kaltenecker
et al. (2019); 20 iterations are used by Laaber and Leitner (2018) and were the default for
Java Microbenchmarking Harness (JHM) benchmarks (Shipilev 2018); and 30 iterations are
used by Curtsinger and Berger (2013), Blackburn et al. (2016), and Chen et al. (2020).

For RQ 2, we rely on the number of iterations that yields the best prediction performance
of the best performing classification algorithm.

4.4.2 Variability Measure

The variability measure is central to decide which benchmarks are stable or unstable. Dif-
ferent measures exist which estimate a benchmark’s variability from its set of measurement
iterations. For RQ 1 and RQ 2, our study mainly relies on a single variability measure, i.e.,
RCIW of the median estimated with Maritz-Jarrett’s technique (Maritz and Jarrett 1978).
However, as the variability measure only estimates a benchmark’s stability, we also study
the impact of two other variability measures in RQ 1.4, i.e., RCIW of the mean with boot-
strap (Davison and Hinkley 1997) and the median absolute deviation (MAD) divided by the
median (Arachchige et al. 2020), in the following called RMAD.

Formally, let Mb be the set of iterations of a benchmark b. Then Mb
i ⊆ Mb is the subset

containing the first i iterations so that Mb
i = {mb

it |mb
it ∈ Mb ∧1 ≤ it ≤ i}. We compute the

variabilities of each benchmark for all numbers of iterations i mentioned in the previous
section.

Maritz-Jarrett Confidence Interval of the Median Estimation. Maritz and Jarrett (1978)
introduced a technique to estimate the confidence interval of the median using the
incomplete beta function. This allows to compute the RCIW of the median for dis-
tributions that are non-normal, such as performance data, and consist of few sam-
ples, which is the case in our experimental setting where the variability is esti-
mated based on 5 to 30 iterations (Akinshin 2020a). We use an adapted version of
SCIPY’s scipy.stats.mstats.mquantiles cimj function (cimjhd), which uses
the median estimated with the Harrall-Davis quantile estimator (Harrell and Davis 1982)
(medianhd ) instead of the empirical median. medianhd performs better for performance
data when multiple modes are present (Akinshin 2020b). The RCIW is then defined as the
function rciwmjhd in Section 1.

rciwmjhd(Mb, cl) =
cimjhd

cl+ 1−cl
2

(Mb) − cimjhd 1−cl
2

(Mb)

medianhd(Mb)
(1)
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In our study, we use a confidence level of 99% (cl = 0.99) and, if not otherwise specified,
refer to rciwmjhd as simply RCIW.

Bootstrap Confidence Interval of the Mean Estimation. The second variability measure
computes the RCIW of the mean of a benchmark, which has been standard practice in
performance engineering research (Kalibera and Jones 2012; Bulej et al. 2017a, b). It
estimates the benchmark’s population confidence interval from an iteration sample with
bootstrap (Davison and Hinkley 1997; Kalibera and Jones 2012), a Monte Carlo simula-
tion technique drawing random samples with replacement. Compared to the Maritz-Jarrett
technique, the bootstrap technique might under-estimate the confidence interval for small
samples.

Formally, the bootstrap sample set Bs is defined as Bs = ⋃s
sample(Mb), where s is

the number of bootstrap samples, sample is the function drawing the random sample with
replacement from the measurement iterations Mb, and overscores indicate the arithmetic
mean. The RCIW is then defined as the function rciwboot in Eq. 2.

rciwboot (M
b, s, cl) =

quantile
cl+ 1−cl

2
(Bs) − quantile 1−cl

2
(Bs)

Mb
(2)

In our study, we use a confidence level of 99% (cl = 0.99) and draw 10,000 bootstrap
samples (s = 10, 000) with replacement (Hesterberg 2015).

Relativemedian absolute deviation (RMAD). The final variability measure RMAD is sim-
ilar to the often used CV, but it is applicable to non-normal distributions (Arachchige et al.
2020; Akinshin 2021). RMAD normalizes the MAD by the median; uses the Harrell-Davis
quantile estimator to estimate the median (Harrell and Davis 1982), similar to the Maritz-
Jarrett technique; and performs bias-correction to the scale factor C according to Park et al.
(2020). RMAD is defined as the function rmad in Eq. 3.

rmad(Mb) = Ci ∗ medianhd(
⋃

m∈Mb m − medianhd(Mb))

medianhd(Mb)
(3)

The scale factor Ci depends on the number of iterations i used for computing RMAD.
We use the suggestions by Park et al. (2020): 1.803927 for i = 5, 1.624681 for i = 10,
1.545705 for i = 20, and 1.523031 for i = 30.

4.4.3 Binarization Threshold

Binary classification requires transforming the benchmark variabilities of the 4,461 bench-
marks, as computed by the variability measure, into two classes, i.e., stable and unstable.
For this, we define the threshold t that divides the RCIW values into these classes. In
RQ 1.1, our study investigates the model’s prediction performance when using different
thresholds for binarization. The thresholds under study are t ∈ {1%, 3%, 5%, 10%}, which
are informed by previous research: Georges et al. (2007) report that performance measure-
ment variability is often around 3%, Mytkowicz et al. (2009) mention that measurement
bias can obfuscate a performance change as large as 10%, and Huang et al. (2014) com-
municate that in their real-world studies performance regressions between 3% and 20% are
considered as relevant. Binarization sets unstable as the positive value (1), i.e., the one we
are primarily interested in identifying, and stable as the negative value (0).
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Fig. 5 Distributions of the data used to train the classifiers after binarization

We apply binarization for all benchmarks after the different numbers of iterations (i), i.e.,
5, 10, 20, and 30. Figure 5 depicts the resulting distributions. It shows that the data is imbal-
anced for all iteration-threshold pairs. This phenomenon can also be observed in the defect
prediction literature (Tantithamthavorn et al. 2020), where there are much fewer defective
methods, classes, or modules than ones without defects. Note that the total number of bench-
marks varies depending on the number of executed iterations: 4,205 with 5, 4,122 with 10,
3,620 with 20, and 3,109 with 30. This is due to our study execution design (see Section 4.3)
which restricts a full benchmark suite execution to a maximum of 2 hours; hence, our data
set does not contain the same number of benchmark iterations, depending on the project
(or suite) it belongs to. Figure 6 shows as scatter plot the relation between RCIW and the
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Fig. 6 Relation between RCIW and maximum number of iterations in our experiment

maximum number of iterations retrieved in our experiment. We observe that benchmarks
with highly variable results are evenly distributed; hence, removing benchmarks where
only fewer iterations are available than the iteration value requires, i.e., 5, 10, 20, or 30, is
unlikely to have a negative impact on our study and its conclusions.

For RQ 2, we rely on the threshold that yields the best prediction performance of the best
performing classification algorithm.

4.5 Model Creation and Validation

Predicting whether benchmarks are stable or unstable involves creating and validating a
machine learning model. In the following, we outline the (1) binary classification algo-
rithms, (2) prediction performance metrics, (3) model validation approach, (4) feature
importance approach, and (5) feature pre-processing steps.

4.5.1 Binary Classification Algorithms

In RQ 1, we compare the prediction performance of 11 classification algorithms from the
PYTHON library SCIKIT-LEARN (Pedregosa et al. 2011). RQ 2 then investigates the feature
importance of the best-performing algorithm from RQ 1. The algorithms are described in
the following:

Naive Bayes (NB) is an algorithm based on the Bayes’ theorem of “naive” assumption of
conditional independence between every feature pair (John and Langley 1995). We
select the implementation of “Gaussian Naive Bayes” from SCIKIT-LEARN, where the
likelihood of the features is assumed to be Gaussian.

k-Nearest Neighbors (KNN) is an instance-based learning algorithm, where the classifica-
tion is computed with the majority vote method (Goldberger et al. 2004). The parameter
k indicates the number of neighbors.

Logistic Regression (LR) is a linear model used for classification, where the probabilities
that describe the possible outcomes are modeled using a logistic function (Hosmer et al.
2013).
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Neural Networks (NN) are a powerful method for supervised learning, especially effec-
tive in estimating functions that can depend on a large number of inputs (Ruck et al.
1990). For our experiments, we select the “Multi-layer Perceptron” implementation from
SCIKIT-LEARN, a fully connected neural network with a linear activation function in all
neurons.

Decision Tree (DT) is a non-parametric classification algorithm where the goal is to predict
by learning simple decision rules inferred from the input data (Quinlan 1986).

Linear Discriminant Analysis (LDA) is a classification algorithm based on the super-
vised dimensionality reduction that projects the input data to a linear subspace (Friedman
1991).

Support Vector Machines (SVMs) are discriminative classification algorithms, formally
defined by a separating hyperplane (Cortes and Vapnik 1995). Given a labeled training
data, the algorithm outputs an optimal hyperplane categorizing new examples. Different
“kernel” functions can be specified for the decision functions. We report the performance
results of two different kernels for SVMs: the linear kernel (LSVM) and the radial
kernel (RSVM).

Random Forest (RF) is a bagging/ensemble method, whose final results depend on the
decisions of multiple classifiers, i.e., multiple decision trees in this case (Breiman 2001).

Boosting is another ensemble method, where multiple iterations of the same algorithm,
e.g., decision tree, are performed. At every new step, it trains the model with a modified
version of the input data. We use two boosting algorithms, both based on decision trees,
namely Adaptive Boosting (AB) (Freund and Schapire 1997), and Gradient Boosting
(GB) (Friedman 2001). Adaptive Boosting gives weights to the votes of every trained
models, adapting them at every step so that a weaker model will have a lower impact on
the final decision compared to the stronger ones. Instead, Gradient Boosting trains the
models in a gradual, additive, and sequential manner.

We do not apply any tuning to optimize the algorithms’ hyper-parameters but use the
standard configuration instead, as provided by SCIKIT-LEARN version 0.24.1. A study on
the effects of tuning on benchmark instability prediction is an important subject for future
work.

From now on, we will use the names of the classifiers to also indicate the type of trained
models.

4.5.2 Prediction Performance Metrics

We evaluate the different models along the following prediction performance metrics:

Precision describes the ability of a classifier not to label a sample that is negative as
positive (Buckland and Gey 1994). It is defined as the ratio TP

TP+FP , where TP is the
number of true positives and FP the number of false positives. Its values lie between 0.0
and 1.0 ranging from worst to best, respectively.

Recall represents the ability of the classifier to find all positive samples (Buckland and
Gey 1994). It is defined as TP

TP+FN , where FN is the number of false negatives. Its values
range from 0.0, i.e., the worst value, to 1.0, i.e., the best one.

F-measure, also known as “F1 score” or “F-score”, is a weighted harmonic average of
precision and recall, defined as 2∗precision∗recall

precision+recall (Chinchor 1992). Its values range from
0.0, i.e., the worst, to 1.0, the best. Intuitively, it is a metric that provides a better intuition
about how well the model performs overall, as it is based on both precision and recall.
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Area Under the Curve (AUC), precisely area under the receiver operating characteristic
curve (AUROC), represents the measure of the area of the ROC curve (Hanley and
McNeil 1982). The ROC is a probability curve, plotting the true positives rate vs. false
positives rate, showing the performance of a classifier at all classification thresholds.
The AUC quantifies, between 0.0, i.e., the worst, and 1.0, i.e., the best, the area that the
ROC draws on a plot. This metric represents the probability the model will score a ran-
domly chosen positive class rather than a randomly chosen negative class. It is a form of
accuracy measure, but instead of classic accuracy, it is more meaningful in the case of
imbalanced data between positive and negative classes, as the distributions of our data
set are (see Fig. 5).

Matthews Correlation Coefficient (MCC) is a measure of classification quality, which
takes into consideration true and false positives and negatives (Matthews 1975). MCC
is regarded as a meaningful measure even if the classes are imbalanced. Its values lie
between -1.0, i.e., a completely wrong prediction, and +1.0, i.e., a perfect one. 0.0
represents an average random prediction.

In the remainder of the paper, we predominantly discuss the models’ prediction per-
formance along the AUC and MCC metrics. AUC (Bradley 1997) and MCC (Chicco and
Jurman 2020) have been shown to be reliable metrics, especially for binary classification.
We provide insights about the other metrics only in a few cases where more details are of
interest. All the details about the above-mentioned metrics are available for reference in our
replication package (Laaber et al. 2021).

Metrics Interpretation. We provide an interpretation of the metrics in the context of bench-
mark instability prediction. If precision is high, the classifier is able to recognize unstable
benchmarks correctly. A simple classifier that maximizes precision would always answers
with a negative value, i.e., “stable”. Instead, the recall describes the capability of recogniz-
ing all benchmarks that are unstable. To maximize recall, a simple classifier would always
answer with “unstable” for all benchmarks.

In case of high precision and low recall, we can be confident that the classifier (mostly)
classifies unstable benchmarks as such, i.e., only few benchmarks classified as unsta-
ble are indeed stable (low false positive (FP)-rate). However, the classifier might have
missed many unstable benchmarks because of the low recall, i.e., many benchmarks that
are indeed unstable are classified as stable (high false negative (FN)-rate). Conversely, a
classifier with low precision and high recall is able to identify most benchmarks that are
unstable as such (low FN-rate), but it also classifies many benchmarks as “unstable” that
are indeed “stable” (high FP-rate). Depending on the application scenario of an unstable
benchmark classifier, recall, precision, or both should be maximized for. We present more
discussion on this trade-off and application scenarios in Section 7. AUC and MCC con-
sider both precision and recall, being more indicative of the general performance of the
classifiers.

4.5.3 Model Validation

Due to our data set being relatively small (≥ 3,620 instances) for machine learning purposes
and highly imbalanced, we employ a repeated k-fold cross validation approach. The data
is randomly split into k folds, and the model is trained on k − 1 folds and validated on
the remaining kth fold. This process is repeated k times collecting a total of k evaluations,
where each time a different kth fold is used for validation. The k-fold cross validation is then
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repeated m times, and the whole data set is shuffled before each repetition. We set k = 10
and m = 30, collecting a total of 10×30 = 300 evaluations for each combination of model,
number of iterations, and threshold. This way, we can take advantage of a high number of
evaluations and then apply statistical tests to investigate the significance and effect size of
our results. All analyses in our study employ this cross validation approach.

4.5.4 Feature Importance

In RQ 2, we investigate the importance of individual features and feature categories for good
prediction performance of the model. We perform both the analyses on the best-performing
combination of classification algorithm, number of iterations, and threshold from RQ 1. The
data for the remaining combinations are part of our online appendix (Laaber et al. 2021).

The first part investigates the individual feature importances. We apply the permuta-
tion feature importance on the training data of each fold (Altmann et al. 2010), using the
sklearn.inspection.permutation importance function. It randomly mutates
each feature n times, computes the decrease in a specified prediction performance metric,
and returns the mean decrease across all n repetitions. We use n = 30 and MCC as metric
in our study. This yields a single importance value per feature and fold. Note that due to
feature pre-processing (i.e., feature selection) not every feature might receive an importance
value for every fold.

The second part investigates the feature category importances. The idea is to identify
groups of features that have a similar purpose, e.g., I/O or concurrency, and show their
importance. The study investigates the following categories:

(1) all 58 features for the benchmark code (bench);
(2) all 58 features for the code called by the benchmark (code);
(3) meta information features (meta);
(4) all programming language features (pl);
(5) control flow features (pl-cf );
(6) data features (pl-data);
(7) concurrency features of the programming language (pl-conc);
(8) all library call features (lib);
(9) library call features related to I/O functionality (lib-io);

(10) library call features related to string and byte manipulation (lib-bytes);
(11) library call features interfacing with the OS (lib-os);
(12) library call features related to math and randomization (lib-math); and
(13) library call features related to concurrency (lib-conc).

Tables 1 and 2 show a mapping of individual features to feature categories. We iteratively
remove each category’s features and report the decrease in prediction performance, i.e.,
MCC in our study. This yields a single category importance value per category and fold.

4.5.5 Pre-Processing

Pre-processing of source code features can have an impact on machine learning models.
As outlined in Section 3, our approach always applies two basic pre-processing steps: (1)
standardization of the features by removing the mean and scaling to unit variance and (2)
feature selection to remove all low-variance features.

In our study, we additionally apply more sophisticated pre-processing steps, i.e.,
removing correlated features and class-rebalancing. Previous research has shown that
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removing correlated features is especially important when investigating feature impor-
tances (Jiarpakdee et al. 2019) and that class-rebalancing can positively impact prediction
importance (Tantithamthavorn et al. 2020). We choose two candidates for each pre-
processing step that have been shown to be superior over other techniques (Tantithamtha-
vorn et al. 2020; Jiarpakdee et al. 2020):

(1) AutoSpearman (Jiarpakdee et al. 2018), a feature selection technique to remove all co-
linear and multi-co-linear features. It works in two phases: (a) it employs Spearman
rank (Hauke and Kossowski 2011) to identify and remove strongly correlated features
above a threshold of |ρ > 0.7| (Kraemer et al. 2003); and (b) it uses the variance
inflation factor (VIF) to identify and remove features with strong multi-co-linearity to
other features, having a VIF threshold above 5 (Fox 2016).

(2) SMOTE (Chawla et al. 2002), a class-rebalancing technique that oversamples the
minority class, i.e., in our setting unstable.

All pre-processing steps are applied to the training data before creating the models.
Standardization and feature selection (based on variance and with AutoSpearman) yield a
pre-precessing model (see Figs. 3 and 4) which is later also applied to the test data. This is
required to scale the feature values and select the same features according to the training
data. Class-rebalancing with SMOTE is only applied to the training data and never to the
test data.

RQ 1.3 investigates the impact of AutoSpearman and SMOTE on the models’ prediction
performance. For this, we asses the prediction performance of all studied algorithms, num-
bers of iterations, and thresholds with a combination of the two pre-processing steps: (1)
a baseline without AutoSpearman and SMOTE, (2) only AutoSpearman, (3) only SMOTE,
and (4) both AutoSpearman and SMOTE.

The study of the feature importances in RQ 2 requires careful selection of pre-processing
steps to be applied. When interpreting prediction models, class-rebalancing techniques must
not be applied as they change the underlying assumption that training and test data have
the same distribution (Tantithamthavorn et al. 2020). If one applies class-rebalancing, this
assumption is violated and the feature importances are biased, which is called concept
drift. Hence, we do not apply class-rebalancing (i.e., SMOTE) for the analyses in RQ 2.
The application of AutoSpearman depends on which feature importance analysis is per-
formed. For the individual feature importances, we apply AutoSpearman before modelling,
because co-linear and multi-co-linear features can bias the conclusions of the permutation
importance (Jiarpakdee et al. 2018). For the feature category importance, we do not apply
AutoSpearman, because we want to keep the categories coherent without removing features
that may contribute to the model performance.

5 RQ 1 – Classifying Benchmarks as Unstable

To answer RQ 1, we investigate whether the statically-computed features can be used to
build effective machine-learning-based predictors. This section describes the statistical tests
and the results.

5.1 Statistical Tests

To ensure that our reported results are valid from a statistical perspective, we employ
statistical hypothesis testing and effect size measures. All reported statistical test
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results are significant at a level (α) of 0.01. We use the term “group of observations”
to indicate the prediction performance scores for all folds of each of the models under
study.

To identify the type of statistical tests that are suitable for the distributions of our
data, we perform a normality test. For all collected groups of observations, we apply the
“D’Agostino’s K2” test (D’Agostino et al. 1990), whose null hypothesis states that a group
of observations are normally distributed. For the majority of the observations, we can reject
the null hypothesis (p-value < 0.01), thus not allowing to use parametric tests for further
investigations. For this reason, we only use non-parametric tests to uniform our discussion.
We report the median values of the metrics under analysis, since the non-parametric tests
generally refer to the median and to ease understandability of the results. Therefore, when
we compare combinations of algorithm, iterations, and threshold, we use the median value
as an indicator of the performance over multiple observations, i.e., results from repeated k-
fold cross validation. The term “range” thus refers to the minimum and maximum values
between median values. We refer the interested reader to our external appendix, which con-
tains the raw data set and enables straight-forward computation of other statistics (Laaber
et al. 2021).

To compare the observations, we apply the “Kruskal-Wallis H” test (Kruskal and Wallis
1952), i.e., the non-parametric version of the ANOVA test. The null hypothesis states that
the observations’ median of all tested groups are equal. The test is applied to multiple groups
simultaneously but can not identify exactly where and how much the groups are statistically
different.

When able to reject the null hypothesis, i.e., the median among all the groups is statisti-
cally significantly different, we apply a post-hoc pairwise test to identify the pairs of groups
of observations that are different. For this, we use the “Dunn’s” test (Dunn 1964) where the
null hypothesis states that there is no difference.

To measure how much two groups are different from each other, we compute the
“Vargha-Delaney Â12” test (Vargha and Delaney 2000) for the effect size to characterize
the magnitude of such a difference. Â12 = 0.5 if two groups (observations) are statistically
indistinguishable. Â12 > 0.5 means that, on average over all observations, the first group
obtains larger values than the one it is compared to, Â12 < 0.5 otherwise. The magnitude
values can be summarized into 4 nominal categories, which rely on the scaled Â12 defined
as Âscaled

12 = (Â12 − 0.5) ∗ 2 (Hess and Kromrey 2004): “negligible” (|Âscaled
12 | < 0.147),

“small” (0.147 ≤ |Âscaled
12 | < 0.33), “medium” (0.33 ≤ |Âscaled

12 | < 0.474), and “large”
(|Âscaled

12 | ≥ 0.474).

5.2 Results

We analyze the results along three dimensions: (1) the 11 classification models; (2) the
threshold t used for binarization, i.e., which benchmark variability (RCIW) values are
considered stable or unstable; and (3) the number of iterations i used for calculating the
benchmark result variability.

RQ 1 aims at assessing the effectiveness of machine learning for predicting, i.e., classify-
ing, unstable benchmarks. It gives an overview of the best performing models. RQ 1.1 and
RQ 1.2 further investigate whether models trained on different thresholds t and with differ-
ent numbers of iterations i, respectively, exhibit different prediction performance. RQ 1.3
studies the impact of sophisticated pre-processing steps on prediction performance, whereas
RQ 1.4 the impact of relying on different variability measures.
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5.2.1 Overall Comparison

Figure 7 shows the line plots of the median prediction performance (on the y-axis), over
300 observations, for all the evaluation metrics under study. The row facets show the classi-
fication models, whereas the column facets represent the number of iterations i, i.e., 5, 10,
20, and 30. The x-axis depicts the threshold values t , i.e., 1%, 3%, 5%, 10%.

Generally High-Performance Algorithms. Referring to MCC as an indicator of the over-
all effectiveness of the classifiers, Random Forest outperforms the other models for all
combinations of iterations and thresholds. Across all combinations, Random Forest’s MCC
median values range from 0.43 to 0.61. The same applies for AUC, where Random Forest’s
prediction performance ranges from 0.79 to 0.90. This is in-line with other models, whose
MCC median values are over 0.50: (1) Adaptive Boosting (max 0.57), (2) Gradient Boosting
(max 0.53), and (3) Decision Tree (max 0.51).

High Precision Algorithms. The algorithms with the highest precision are: (1) Radial Sup-
port Vector Machines (from 0.70 to 1.0). (2) Linear Support Vector Machines (from 0.5 to
1.0), and (3) Gradient Boosting (from 0.67 to 1.0). It is likely that these algorithms tend
to train the classifier to answer mostly with “stable”, i.e., the negative value for the met-
ric. However, all of these algorithms suffer from low recall, specifically (1) Radial Support
Vector Machines (from 0.06 to 0.48). (2) Linear Support Vector Machines (from 0.06 to
0.42), and (3) Gradient Boosting (from 0.15 to 0.66). arguably rendering them inferior to
algorithms with balanced precision and recall.

Further, we observe a growing trend in precision with increasing threshold and itera-
tions (see Fig. 7). We discuss the impact of these values in more detail with RQ 1.1 and
RQ 1.2 in Sections 5.2.2 and 5.2.3, respectively. This might be a phenomenon related to
the reduced number of unstable benchmarks with an increasing number of iterations and
threshold values (see Fig. 5). All of the above-mentioned algorithms are based on subse-
quent iterations for training, which we set to 100,000 in our experiments. It is likely that
these algorithms do not have enough “time” to learn how to recognize such a low number of
unstable benchmarks. Instead, the Neural Networks algorithm, which is similarly based on
the same concept of iterations, does not fail in the same way. Neural Networks obtain almost
0.5 for the MCC scores. It is likely that their complex structure of layers is more effective
in capturing the features that characterize unstable benchmarks, within the given number of
iterations. Thus, hyper-parameter tuning is expected to improve the general performance of
these classifiers.

High Recall Algorithm. The model with, by far, the highest recall is Naive Bayes. The pre-
cision is low (often ≈ 0.1), therefore Naive Bayes is not able to correctly identify “unstable”
benchmarks. Having high recall (≈ 1.0), it is likely that the algorithm trained the model to
answer “unstable” in the majority of the cases. Indeed, precision and recall are not balanced,
which is also reflected in a low MCC value (often ≈ 0.06).

Comparing to Baselines. We also trained four basic classification algorithms as baselines,
based on different strategies to generate predictions: (1) “stratified”, assigning predictions
based on the distribution of the data, (2) “most frequent”, always predicting the most fre-
quent label in the training data, (3) “uniform”, generating predictions uniformly at random,
(4) “prior”, always predicting the class that maximizes the class prior. We verified that for all
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Fig. 7 Metrics comparison across thresholds t , iterations i, and algorithms
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cases the AUC and MCC values for the baselines are close to ≈ 0.5 and ≈ 0.0, respectively,
clearly outperformed by all the other classifiers.

Further details are available in our replication package (Laaber et al. 2021).

5.2.2 RQ 1.1 – Impact of the Threshold

We now investigate wether training the model with different threshold values t has an impact
on prediction performance, for all combinations of iteration values i and classification algo-
rithms. More specifically, we fix two of the dimensions and vary the other one, i.e., we
compare the evaluation scores of the models with the same values for a specific classifi-
cation algorithm and iteration value. In this way, we can analyze the impact of a single
dimension on the evaluation metrics.

We observe from Fig. 7 that both AUC and MCC values follow a growing trend when
the threshold value increases, for the majority of algorithms. Graphically, it is possible to
identify this behavior by following the lines of AUC and MCC for each distinct facet box.
To validate this, we use the Kruskal-Wallis H test and verify that there is a statistically
significant difference between observations whose median value is represented in Fig. 7.
After applying the Dunn’s post-hoc pairwise test, we can also verify whether there is a
significant difference between consecutive threshold values. Moreover, we can measure
the magnitude of such a difference with the Vargha-Delaney Â12 test. The Â12 value also
indicates whether the first group of observations has values that are greater than the second
group, on average. Thus, showing whether there is a statistically growing trend.

The Kruskal-Wallis H test shows that there is always a statistically significant difference
between threshold values 1% and 10%, regardless of the model and number of iterations.
The Dunn’s test rejects the null hypothesis (p-value < 0.01) and the magnitude computed
by the Â12 test ranges from “small” to “large”, except for k-Nearest Neighbors, Logis-
tic Regression, Neural Networks, and Linear Support Vector Machines, when i = 10. We
observe an upwards trend in prediction performance with an increasing threshold value for
almost all the algorithms and iterations, except Naive Bayes, which always shows decreas-
ing trends, i.e., both AUC and MCC have decreasing trends for all combinations of models
and iteration values. k-Nearest Neighbors, Logistic Regression, Neural Network, Linear
Support Vector Machines, Radial Support Vector Machines, and Gradient Boost have some
decreasing AUC and MCC values with 5 iterations.

The increase in prediction performance with higher thresholds is likely an effect of mea-
surement uncertainty (see Section 3.2), as reported by Georges et al. (2007) and Mytkowicz
et al. (2009). Stable benchmarks (with low result variability) probably have different charac-
teristics, in terms of the source code features they call, compared to unstable benchmarks. If
the threshold value is small(er) and measurement uncertainty pushes the benchmark’s result
variability beyond the threshold, a benchmark is more likely to fall into the “wrong” class,
i.e., stable vs. unstable. Consequently, its source code feature characteristics and stability
class are misaligned and prediction performance suffers. Higher thresholds tend to increas-
ingly assign benchmarks to their “right” stability class which positively impacts prediction
performance.
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Regarding Random Forest, i.e., the best overall model (see Section 5.2.1), we notice a
clear growing trend for all the iteration values, except for i = 5, when the threshold values
grows from 1% to 3%. In particular: (1) for 5 iterations, the AUC median values start from
0.79 (threshold at 1%) to reach 0.85 (threshold at 10%), whereas MCC from 0.45 to 0.53;
(2) for 10 iterations, AUC ranges from 0.80 to 0.89, and MCC from 0.46 to 0.58; (3) for 20
iterations, AUC ranges from 0.83 to 0.90, and MCC from 0.48 to 0.59; (4) for 30 iterations,
AUC ranges from 0.84 to 0.89, and MCC from 0.51 to 0.61. Therefore, considering MCC
as the main indicator, for Random Forest the best prediction performance is always with a
threshold t of 10%, regardless of the number of iterations i.

5.2.3 RQ 1.2 – Impact of the Number of Benchmark Iterations

We are now interested in whether the number of benchmark iterations i that a model is
trained on has an impact on the prediction performance. As for RQ 1.1, we validate if the
observations follow a growing trend for AUC and MCC when increasing the number of
benchmark iterations. For this, we fix both the models and threshold values and analyze
the values of the observations for AUC and MCC, for all iteration values. It is possible to
visually observe this in Fig. 7 by looking at the points of a specific metric, e.g., AUC and
MCC, and follow the horizontal grid lines of one of the thresholds, e.g., 10%, from left to
right.

We can validate the following observations by running the Kruskal-Wallis H test. The
test shows statistical significative difference (p-value ≥ 0.01) for all the values of AUC and
MCC.

We, again, apply the Dunn’s test to pinpoint to the different observations, followed by
the Vargha-Delaney’s Â12 test for the effect size. In particular, the following models do
not show any significant difference between iterations values 5 and 30: (1) Naive Bayes
when the threshold is 10%, (2) Neural Network when the threshold is 1%, and (3) Gradient
Boosting when the threshold is 1%. Based on the Vargha-Delaney’s Â12 test, we find that
the following combinations do not improve AUC and MCC values when the number of
iterations increases: (1) Logistic Regression, (2) Linear Discriminant, (3) Linear Support
Vector Machine, (4) Radial Support Vector Machines, all for a threshold of 1%, and (5)
Naive Bayes for all thresholds. However, we observe that in the vast majority of the cases, 30
iterations result in the best prediction performance, considering MCC as the main indicator.

Similar to the prediction performance sensitivity caused by the threshold value
(see Section 5.2.2), prediction of benchmark instability is affected by the number of iter-
ations. Recall from Section 2 and Fig. 5, with an increase in number of iterations, a
benchmark’s variability decreases, i.e., the confidence interval narrows, and the benchmark
becomes more stable. This has the effect that characterizing features of unstable benchmarks
seem to be better associated with benchmark instability and, hence, prediction performance
improves.

As for the previous research question, we analyze the trends of Random Forest, i.e., the
best overall model. Also in this case, we notice a growing trend for all the threshold values.
In detail: (1) for a threshold of 1%, the AUC median values start from 0.79 (5 iterations) to
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reach 0.84 (30 iterations), whereas MCC from 0.45 to 0.51; (2) for a threshold of 3%, AUC
ranges from 0.81 to 0.88, and MCC from 0.43 to 0.55; (3) for a threshold of 5%, AUC ranges
from 0.82 to 0.88, and MCC from 0.45 to 0.60; and (4) for a threshold of 10%, AUC ranges
from 0.85 to 0.89, and MCC from 0.53 to 0.61; Therefore, the best prediction performance
with Random Forest is always with 30 iterations, regardless of the threshold value.

5.2.4 RQ 1.3 – Impact of Removing Correlated Features and Applying Class
Re-Balancing

In this section, we investigate whether more sophisticated pre-processing steps have an
impact on the prediction performance. We apply a combination of the following two pre-
processing steps: (1) AutoSpearman (Jiarpakdee et al. 2018), a feature selection technique
to remove all co-linear and multi-co-linear features; and (2) SMOTE (Chawla et al. 2002),
a class-rebalancing technique that oversamples the minority class.

Figure 8 shows the difference in prediction performance for models with the pre-
processing steps applied compared to models without the pre-processing steps applied,
across all models and for all metrics. Each data point represents a paired difference of
one particular model and one particular fold. These differences represent an “increment”
when positive, a “decrement” otherwise. Overall, we observe that using pre-processing
steps neither improves nor deteriorates the prediction performance for MCC and AUC. The
Vargha-Delaney’s test shows there is only a negligible statistical difference. In terms of pre-
cision, SMOTE increases prediction performance, whereas AutoSpearman does not have
an impact. As for recall, SMOTE decreases prediction performance while AutoSpearman’s
increase is negligible.

Figure 9 focusses on Random Forest, the best model in our study. Employing AutoS-
pearman improves MCC and AUC by 0.023 and 0.005, respectively, as also confirmed by
the statistical tests. As for precision and recall, the overall results are also confirmed for
Random Forest: SMOTE improves precision by 0.05 by itself and by 0.07 in conjunction
with AutoSpearman, while recall decreases by 0.05. An increase in precision and a simulta-
neous decrease in recall can be acceptable, depending on the concrete application scenario,
as discussed in detail in Section 7. Moreover, reducing the number of features reduces the
proneness to overfitting. Considering the MCC value, it is generally advisable to apply
AutoSpearman when using Random Forest. However, the model that performs best over-
all, having MCC 0.62 and AUC 0.89, is Random Forest trained with a threshold t = 10
and benchmark executions from 30 iterations (i = 30), while applying SMOTE and not
applying AutoSpearman.
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Fig. 8 Comparison of the increments in prediction performance when using pre-processing steps over all the
combinations of thresholds, iterations, models, and folds

5.2.5 RQ 1.4 – Impact of Different Measures of Variability

In this section, we investigate whether relying on different measures of variability (i.e.,
dependent variable) leads to different prediction performance. The previous sections present
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Fig. 9 Comparison of the increments in prediction performance when using pre-processing steps with
Random Forest

the results based on rciwmjhd , simply reported as RCIW. We now compare the results
rciwmjhd with rciwboot and rmad.

Table 3 shows the top 5 models, sorted by MCC in descending order, for each measure of
variability. As previously mentioned, Random Forest is the best model with t = 10 and i =
30. We observe that Random Forest is still a dominant model when considering rciwboot

and rmad, but also Adaptive Boosting performs well. Interestingly, the use of rciwboot

and rmad considerably increases the maximum values for all the prediction performance
metrics. In particular, MCC increases by 0.08 with rciwboot and by 0.11 with rmad.

It is evident that the use of different variability measures affects the prediction perfor-
mance. Nonetheless, our study also shows that our model performs well across all three
measures of variability under study. Researchers as well as practitioners should consider

Table 3 The top 5 models ordered by MCC with rciwmjhd , rciwboot , and rmad as variability measure

Variability Model t i Selector Sampler MCC AUC

Measure

rciwmjhd RF 10 30 None SMOTE 0.6209 0.8863

RF 10 20 AutoSpearman SMOTE 0.6191 0.8838

RF 10 20 None SMOTE 0.6149 0.8991

RF 10 30 None None 0.6082 0.8864

RF 5 30 None None 0.6006 0.8837

rciwboot RF 10 30 None SMOTE 0.7052 0.9280

RF 10 30 None None 0.7037 0.9185

RF 10 20 None None 0.6741 0.9028

RF 10 30 AutoSpearman None 0.6715 0.9224

AB 10 30 None None 0.6700 0.9061

rmad RF 10 20 None SMOTE 0.7321 0.9737

RF 10 20 None None 0.7107 0.9805

RF 10 20 AutoSpearman SMOTE 0.7107 0.9421

AB 10 20 None None 0.7087 0.9535

AB 10 20 None SMOTE 0.7021 0.9499
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which variability measure is appropriate for their use case and when they evaluate their
models.

6 RQ 2 – Important Features for Good Predictions

To answer RQ 2, we investigate which individual features and which feature categories (i.e.,
groups of features) are important for high prediction performance. Our study considers the
best performing model from RQ 1 as the model under investigation in RQ 2, i.e., Random
Forest built with 30 iterations and a 10% threshold. This section introduces the statistical
tests performed on the feature importances and describes the results.

6.1 Statistical Tests

Recall from Section 4.5.4, the study computes a single importance value for each individual
feature and fold, if the feature has not been removed by AutoSpearman; in total up to 300
importance values per feature. Similarly, the study computes the feature category impor-
tance for each fold; again, 300 importance values per category in total. Importance values
correspond to the decrease in MCC prediction performance.

To investigate the individual feature importances, we first replace the missing importance
values with multiple imputation (Rubin 1987); specifically, we rely on the mice package in
R (van Buuren and Groothuis-Oudshoorn 2011), which implements multiple imputation by
chained equations (van Buuren 2007). Our study employs mice to predict missing values
with Bayesian linear regression for 50 iterations and uses the average across these iterations
as the final imputed value. Second, we apply the non-parametric version of the Scott-Knott
effect size difference (ESD) v3 test (Tantithamthavorn et al. 2019),4 which clusters features
into statistically distinct groups based on the “Kruskal-Wallis H” test (Kruskal and Wallis
1952) and the “Cliff’s Delta” effect size (Cliff 1996). Features in the same cluster have a
negligible effect size (|δ| < 0.147), and features in different clusters have a non-negligible
effect size (|δ| ≥ 0.147) among each other, based on the effect size magnitudes by Romano
et al. (2006).

To investigate the feature category importances, we perform “Wilcoxon signed-rank”
tests (Wilcoxon 1945) and assess the effect sizes with the “Vargha-Delaney Â12”
test (Vargha and Delaney 2000), relying on the same magnitudes as in Section 5.1, between
prediction performances of a model trained on all features and one where a feature category
has been removed. In our study, we consider a p-value below α = 0.01 as significant.

4https://github.com/klainfo/ScottKnottESD
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Fig. 10 Individual feature importances with permutation importance for MCC. Facets indicate the rank as
computed by the non-parametric Scott-Knott ESD test
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6.2 Results

This section presents the feature importance results for (1) individual features and (2) feature
categories, which are depicted in Tables 1 and 2.

6.2.1 Individual Features

We assess the importance of all 116 features for good prediction performance. Half of the
features belong to the code of the benchmark function (Bench), and the other half belongs to
the source code called by the benchmark (Code). Figure 10 shows the permutation impor-
tance scores, i.e., the MCC prediction performance reduction, for each feature. The facets
indicate features with negligible effect size among each other, as computed by the Scott-
Knott test. Colloquially, features towards the top and to the right are more important for
good predictions with Random Forest. Note that the figure does not depict the features that
AutoSpearman consistently removes, i.e., for each fold, in our study.

We observe that 7 features, with ranks 1 to 3, are individually important for good pre-
dictions. The benchmark’s LOCs are the most important feature with a median importance
of 0.058, followed by the usage of slices (Go’s dynamic array implementation) and nested
loops in code called by the benchmark, with a median importance of 0.033 and 0.032,
respectively. The third-most-important features are again related to the size of the bench-
mark, i.e., the LOCs of the file (median of 0.023) and the number of files in the package
(median of 0.020) in which it is defined; the number of nested loops in the benchmark
(median of 0.000 with the 25th and 75th percentile of -0.001 and 0.064, respectively); and the
usage of synchronization APIs, e.g., mutexes, in the code called by the benchmark (median
of 0.015). The remaining features, with ranks 4 and 5, have either a median importance of
0.0 or an importance distribution centered around 0.0. Consequently, they are individually
unimportant for the model.

The analysis shows that both features related to the benchmark and to the called source
code are important for good predictions. It is important to emphasize that this investigation
can only capture the importance of individual features in isolation and is likely to miss the
collective contribution of multiple features. For example, Siegmund et al. (2015) showed
that machine learning models for software performance only thrive if such a combination of
features is considered. Hence, a conclusion that the majority of the features are unimportant
for good predictions is invalid, especially considering the good prediction performance of
the model with all features, i.e., MCC of 0.61.

6.2.2 Feature Categories

Our prediction model relies on different source code features that aim at serving as proxies
for typical sources of performance variability. In this section, we investigate whether dif-
ferent feature categories, i.e., groups of features that are related to the same concept or the
same part of the software, are collectively important for good prediction performance, as
opposed to individual features in the previous section. Section 4.5.4 as well as the Tables 1
and 2 describe the feature categories under investigation and the assignment of individ-
ual features to these categories. Table 4 shows the MCC prediction performance of models
built without each category as well as their difference compared to a model built with all
features.

We observe that only the code category has a large effect; the model suffers from a
0.1889 drop in MCC, if features of the called source code are removed, as compared to the
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Table 4 Feature category importance

Category MCC Difference p-value Â12 Magnitude

All features 0.6091 – – 0.5000 –

code 0.4202 −0.1889 0.0000 0.1952 large

meta 0.6029 −0.0062 0.0080 0.4733 negligible

lib-math 0.6033 −0.0058 0.0107 0.4921 negligible

pl 0.6058 −0.0033 0.4588 0.4866 negligible

lib 0.6059 −0.0032 0.0092 0.4866 negligible

lib-io 0.6059 −0.0032 0.0319 0.4902 negligible

lib-os 0.6059 −0.0032 0.0499 0.4912 negligible

pl-cf 0.6061 −0.0030 0.7210 0.4943 negligible

pl-data 0.6091 −0.0000 0.5776 0.4998 negligible

pl-conc 0.6091 −0.0000 0.5143 0.4933 negligible

lib-conc 0.6091 0.0000 0.7694 0.5024 negligible

lib-str 0.6091 0.0000 0.1091 0.4932 negligible

bench 0.6283 0.0192 0.0000 0.5363 negligible

Feature categories are individually excluded from the model and compared to the model built with all
features. A p-value in bold indicates significance at α = 0.01

model built with all features. While the benchmark code (bench) has a significant impact as
well, its effect size is negligible. This indicates that features related to the called code are
significantly more important for good predictions than features related to the benchmark
code itself, when considering their collective importance.

The other categories that have a significant impact are meta-information features (meta),
as also observed for individual feature importances where the benchmark’s LOCs are shown
to be important; and features for standard library calls (lib). However, the effect size of both
is negligible.

The results show that good prediction performance can not be attributed to the col-
lective impact of individual feature categories, if these categories are based on the same
performance-affecting concept, e.g., I/O, concurrency, OS interaction, or programming
language constructs. We conjecture that there is an interplay of individual features from
different categories, e.g., concurrency constructs in combination with network I/O, which
enables good prediction performance. Nevertheless, the analysis also shows that features
extracted from the source code called by the benchmark are paramount for our model.
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7 Discussion and Future Research

In this section, we provide insights for researchers to build on and practitioners wishing to
apply instability prediction as well as discuss potential directions for future research.

7.1 Application Scenarios

We see five potential application scenarios where benchmark instability prediction could
be of use for researchers and practitioners: (1) regression benchmarking by selection and
reduction, (2) support for developers writing benchmarks, (3) execution configuration of
benchmarks, (4) automatic benchmark generation, and (5) stability estimation of new
benchmarks or for new environments.

Regression Benchmarking. Test suite reduction (also minimization) and regression test
selection (RTS) are common techniques in unit testing to reduce the testing effort (Yoo and
Harman 2012).

RTS selects a subset of tests that should be executed upon a new version. Our approach
can identify benchmarks that yield unstable results and, hence, are potentially less useful for
slowdown detection or do not accurately reflect the program’s performance. Considering
the immense execution times of benchmark suites (Huang et al. 2014; Chen and Shang
2017; Laaber and Leitner 2018, 2020), selecting only benchmarks whose results are of high
quality is desirable to reduce overall testing time. Our approach can assist in that with only
relatively lightweight, statically-computed metrics.

As RTS techniques often (only) consider the changes made between two versions, our
approach would probably need to incorporate change related features, e.g., number of
changes to programming language features or API calls. However, we see three reasons why
our approach could still work for RTS: (1) recent research found that the metrics related
to the source code change are less important for predicting performance properties (Ding
et al. 2020); (2) performance variability is complex and the interplay of multiple features
are important for accurate predictions (see Section 6); and (3) one is likely interested in the
absolute stability of a benchmark and not the change in stability (a change is more applicable
for runtime performance).

Note that our approach would not be a safe benchmark selection technique, as some
(unstable) benchmarks might expose slowdowns and our prediction would remove them.
Such a study is out of scope of this paper and subject to future research. We can imagine
such a study comparing to state-of-the-art functional RTS research (Gligoric et al. 2015;
Zhang 2018; Machalica et al. 2019) and performance test selection (de Oliveira et al. 2017;
Alshoaibi et al. 2019; Chen et al. 2020).

Test suite reduction removes redundant tests, usually based on single version informa-
tion. Our approach would be similar to reduction as it would remove unstable, potentially
less meaningful benchmarks. However, the redundancy aspect of traditional reduction is not
modeled in our approach. In this regard, we might want to relax the notion of reduction and
not remove these benchmarks indefinitely. We argue that unstable benchmarks are similar
to flaky tests as their results can not be trusted (Luo et al. 2014), and unstable benchmarks
could be quarantined instead of permanently removed for developers to (if possible) fix their
source if instability.

Developer Support. We envision our benchmark instability prediction to fit well into
developer support tooling. For example, as part of the IDE or as a standalone linter, our
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approach could raise awareness about the result accuracy of benchmarks where executing
them is not an option. This might be especially useful for developers during the development
phase of the benchmarks. Based on this early feedback, developers could rethink which parts
of their software are benchmarked and which parts are not. Questions like “Do I really need
this benchmark?” could arise and optional benchmarks that are also unstable might not be
written in the first place. Moreover, developers could mock variability-inducing program-
ming constructs, such as file or network I/O, to improve benchmark stability. This, however,
should be done with care as the mocking possibly defeats the purpose of benchmarking and
renders the benchmark results unrealistic and useless.

Configuring Benchmarks. The number of repeated iterations a benchmark is executed for
has a direct impact on its result variability and consequently on its stability. In Section 2,
we describe this repetition and its impact. However, finding the right configuration is non-
trivial and developers often get it “wrong”, as shown by Laaber et al. (2020). Their solution
is to dynamically—during the execution of a benchmark—decide when to stop a bench-
mark; still, this dynamic reconfiguration requires manually setting upper bounds on the
iteration parameter. Usually, developers would rely on default parameters imposed by the
benchmarking framework or follow best practices from research, e.g., by Georges et al.
(2007). Our approach would provide a first step towards solving this problem, by making
developers aware of certain benchmarks potentially being unstable, before executing them.
This would enable developers to take extra care of these benchmarks and setting the itera-
tion configuration to higher values than set by default or proposed by research. If dynamic
reconfiguration by Laaber et al. (2020) is used, the upper bounds for the number of iterations
can be pessimistically set to high values for unstable benchmarks.

Automatic Benchmark Generation. Writing benchmarks for libraries and frameworks is
still a niche technique (Stefan et al. 2017; Leitner and Bezemer 2017). One way to address
the challenges of writing benchmarks would be to automatically generate them. Bulej et al.
(2012, 2017a) and Rodriguez-Cancio et al. (2016) introduce approaches that generate rig-
orous benchmarks from developer-defined code segments. However, they do not give an
indication whether the results of the generated benchmarks will be reliable. Novel bench-
mark generation techniques could reuse existing unit tests as performance tests (Ding et al.
2020) or utilize search-based techniques such as EvoSuite (Fraser and Arcuri 2011). Such
generation techniques could leverage our approach to identify generated benchmarks that
will have stable results and refrain from generating ones that do not.

Stability Estimation of New Benchmarks or for New Environments. While for existing
benchmarks one could leverage historical execution data to identify potentially unstable
benchmarks before testing a new version, this can neither be done for new benchmarks
where no historical data exists nor for existing benchmarks that are to be executed in new
environments. A model for new benchmarks could be specifically trained on historical
execution data of previous version of the software under test and the concrete execution
environment the project is executed in. Whereas, a model for new environments could be
trained on benchmarks from other projects that have already been executed in said envi-
ronment. This could especially be useful for continuous integration (CI) providers, such as
TRAVISCI or GITLAB, who potentially use different hardware to run builds on, to provide
new users with stability estimations for their benchmarks.
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7.2 Tradeoff between Precision and Recall

As with any binary classification, there is an inherent tradeoff between precision and recall,
i.e., whether false positive (FP) or false negative (FNs) are more detrimental to what the
approach is trying to ultimately achieve. In our context it depends on the application sce-
nario, as described in Section 7.1, and the positive value for classification. We consider the
positive value to be “unstable”; consequently, we can question if it is more important to only
select unstable benchmarks (low FP-rate) or not to miss any unstable benchmarks (low FN-
rate). Generally, both are desired and our results show that Random Forest performs best
among the classification algorithms under study.

Precision is arguable preferred for regression benchmarking and automatic benchmark
generation where indeed unstable benchmarks should be removed or not be selected. Simi-
lar for tooling support and stability estimation of new benchmarks or for new environments,
which should not overwhelm developers with FPs. This can be further optimized for by
applying class-rebalancing with SMOTE to increase precision, however, at the expense of
recall, as Section 5.2.4 (RQ 1.3) shows. Recall could be preferred for configuring bench-
marks to execute all unstable benchmarks with more measurement iterations for them to
become more stable.

Our prediction results show that the majority of classifiers perform better in terms of
precision than recall (see Section 5.2), supporting the majority of our application scenar-
ios nicely. A definite answer as to whether these application scenarios are indeed well
supported, requires follow-up studies employing our approach.

7.3 Classification vs. Prediction

We transform benchmark variability into a binary classification problem, i.e., a benchmark
being stable or unstable (see Sections 3.2 and 4.4.3). We use four thresholds t inspired by
literature to make this distinction between the two classes (Georges et al. 2007; Mytkowicz
et al. 2009), and we perform a sensitivity analysis on the threshold value in Section 5.2.2.
Ideally, we would predict a benchmark’s variability with, e.g., a (linear) regression model;
initial experiment were unsuccessful, where the error was exceedingly high. One poten-
tial reason for this failure is that the statically-computed features are not precise enough or
source code features in general do not offer enough explanatory power for regression-based
prediction. Future research should explore other or more precise features to predict the exact
performance result variability of a benchmark. Nonetheless, for (at least) two of our out-
lined application scenarios (see Section 7.1), i.e., regression benchmarking and developer
support, we argue that the simplification to a binary classification problem is sufficient. The
configuration of a benchmark would greatly benefit from a precise variability prediction,
as this would enable suggesting the “right” iteration value to achieve a desired benchmark
variability, e.g., smaller than 3% RCIW.

7.4 Features

We now discuss the tradeoffs concerning our choice of features and two potential
improvements.

Static vs. Dynamic Features. Our model is based only on statically-computable source
code features, by parsing ASTs (intra-procedural) and combining the features with static
CG analyses (inter-procedural). The feature extraction trades faster performance for the
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precision of the analyses. However, our prediction results (see Section 5.2) show that our
static features perform well; especially Random Forest, our best performing predictor, with
a median performance ranging from 0.43 to 0.68 and from 0.79 to 0.90 for MCC and
AUC, respectively. To improve feature precision, we identify a switch from static features
to dynamic features. In particular, relying on dynamic control flow and CGs to accurately
identify which programming languages features are covered and APIs are called by a bench-
mark. We suppose that more precise analyses lead to better prediction performance; this,
however, is subject to future research. Apart from the features we use, dynamic features
based on performance profilers, e.g., CPU, memory, locks, or race detector information,
might help to further improve prediction performance. An approach employing dynamic
features would run a single invocation of a benchmark with the feature extractor injected,
gather all necessary information, and feed these features into a predictor to make a decision
whether a rigorous benchmark execution with multiple iterations is required.

Execution Environment Proxies. Source code is only one of the many factors influencing
performance variability; others are, to name a few, dynamic compiler optimizations, mem-
ory layout, environment variables, virtualization, and OS-dependant factors (Georges et al.
2007; Mytkowicz et al. 2009; Curtsinger and Berger 2013; de Oliveira et al. 2013; Arif et al.
2018; Maricq et al. 2018; Laaber et al. 2019). These other factors could potentially improve
the prediction performance of our model even further. We, therefore, argue that an improved
prediction model should consider additional features that approximate the other factors that
impact benchmark variability. In particular, we envision to include performance profiles of
the execution environment, e.g., based on standardized (system) microbenchmarks. A sim-
ilar approach to Wang et al. (2018) for predicting the performance of cloud applications
based on resource profiles, Scheuner and Leitner (2018) for estimating the application per-
formance from system microbenchmarks, or Jimenez et al. (2018) for inferring the resource
profile of a benchmark could offer the desired proxy features for the execution environment.

7.5 Machine Learning Approaches on Benchmarks

The two approaches closest to ours are by Chen et al. (2020) and Ding et al. (2020). Both
utilize machine learning classifiers to predict performance-related properties of functional
unit tests that are used as benchmarks. While the former predicts whether unit tests lend
themselves to use as performance test, the latter predicts whether a unit test is affected by a
code change in terms of performance.

Both utilize source code metrics as features, inspired by previous research, which is sim-
ilar to our approach. However, they consider code change diffs which ours does not, and
they focus more on “traditional” source code metrics, such as LOC, cyclomatic complexity,
coverage, code churn, as well as meta information from issues trackers, such as histori-
cal data. Chen et al. (2020) rely on performance-related features as well, such as external
function calls, lines added or removed, loops, synchronization, and expensive variables and
parameters. Our approach goes a step further and considers different library calls, which
could impact performance, as individual features.

Where our approach and study diverges most from theirs is in terms of (1) prediction
goal (i.e., dependent variable) and (2) study design. In terms of prediction goal, Ding et al.
(2020) identify tests that are able to detect performance changes reported in issue track-
ers; Chen et al. (2020) predict whether a test will experience a measured performance
change between two versions; and our approach identifies benchmarks that are unsta-
ble. That is, our approach is concerned with performance variability whereas theirs are
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concerned with performance changes. The study design of Ding et al. (2020) and Chen et al.
(2020) is somewhat similar: they focus on 2 and 3 study objects across multiple versions,
utilize functional unit tests for performance, execute the tests on cloud infrastructure, gather
different performance metrics, and additionally emphasize qualitative insights. Our study
design is quite different: we focus on 230 study objects in a single version, utilize dedicated
performance benchmarks, execute the benchmarks in controlled bare-metal environments
to control confounding factors, focus on runtime performance (variability), study a larger
range of machine learning classifiers, and concentrate on investigating a large parameter
space of the approach.

In terms of prediction performance, the three approaches are similar: they all achieve
an AUC around 0.90 for the best performing models. Compared to Chen et al. (2020), our
approach’s best model performs better regarding precision but worse in terms of recall.
Moreover, both traditional and performance-related features are important for our model,
whereas performance-related features are less important for theirs. Compared to Ding et al.
(2020), features related to the called code are significantly more important than features of
the benchmark code for our model.

8 Threats to Validity

Construct Validity. The central aspect of our paper is predicting benchmark stability. The
definition of benchmark stability is consequently subject to validity concerns. We use the
performance result variability of a benchmark as the measure for how stable it is. The major-
ity of our study relies on the RCIW of the median estimated with a technique by Maritz and
Jarrett (1978), which works well for small samples. To mitigate the threat of bias towards
one measure of variability, we study the impact of different measures on our models’ predic-
tion performance in RQ 1.4. We provide additional data on the prediction performance and
the feature importance for the two other measures, i.e., RCIW of the mean computed with
bootstrap (Davison and Hinkley 1997; Kalibera and Jones 2012) and RMAD (Arachchige
et al. 2020), as part of our online appendix (Laaber et al. 2021). Nevertheless, a reader
should acknowledge that different measures for benchmark stability could change the results
of our paper. Moreover, the transformation of result variability to a binary classification
problem, i.e., whether a benchmark is stable or unstable, depends on the used threshold
t (see Section 4.4.3). We use t ∈ {1%, 3%, 5%, 10%} informed by previous work (Georges
et al. 2007; Mytkowicz et al. 2009; Huang et al. 2014) and perform a sensitivity analysis on
the threshold value in Section 5.2.2. Other thresholds and, consequently, a different assign-
ments of benchmarks to the classification classes “stable” and “unstable” might result in
different outcomes.

Our approach relies on AST parsing and static CG information and not on precise,
dynamic coverage information. This imprecision is likely to assign more features in higher
numbers (counts) to certain benchmarks, which are actually not executing these features.
Hence, the prediction (Section 5.2) and the feature importance (Section 6) results are likely
impacted. This was a conscious design decision as we aimed for a purely static model to
be applicable in scenarios where benchmark execution is infeasible or impossible. Sim-
ilarly, different static CG algorithms, e.g., Class Hierarchy Analysis (CHA) (Dean et al.
1995), Rapid Type Analysis (RTA) (Bacon and Sweeney 1996), or control flow analysis
(CFA) (Shivers 1988; Grove and Chambers 2001), will yield different feature counts for
each benchmark and, therefore, impact the results of this paper. Moreover, the execution
environment is likely to impact the performance variability and, hence, the results (also
compare to Section 7.4).
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In RQ 1, we assess the prediction performance of the 11 classifiers, relying on the 5
evaluation metrics in Section 4.5.2. We aimed for a wide variety of threshold-dependent and
threshold-independent metrics to improve construct validity. In particular, we refer to AUC
and MCC as main indicators of the prediction performance of the classifiers. The literature
shows that AUC (Bradley 1997) and MCC (Chicco and Jurman 2020) are reliable metrics,
especially in the case of binary classification.

In RQ 2, we study the importance of individual features and feature categories for the
best prediction model from RQ 1. We rely on permutation feature importance for individual
features and a simple reduction in MCC prediction performance if a category is removed
from the model as the measures of importance. While these are common techniques to
assess feature importance, different techniques or prediction performance metrics might
highlight other features and categories as important. Consequently, this could change the
results and conclusions of RQ 2.

Internal Validity. Any performance measurement experiment, which includes benchmark
executions, is subject to measurement uncertainty (Mytkowicz et al. 2009; Curtsinger and
Berger 2013; de Oliveira et al. 2013; Maricq et al. 2018), which could alter our bench-
mark result variability and, consequently, the benchmark stability. To reduce measurement
uncertainty, we follow a rigorous performance engineering methodology (Georges et al.
2007) and use non-virtualized machines with hyper-threading, frequency scaling, and Intel’s
TurboBoost turned off (Stefan et al. 2017). Different execution environments are likely
changing the stability of individual benchmarks, potentially affecting the correlation and
prediction results. We opted for a tightly controlled environment to control for as many
confounding factors as possible.

The number of iterations i (see Section 3.2) affects the internal validity of our experi-
ment, as the iterations have a direct impact on the benchmark result variability. To measure
this effect, we perform a sensitivity analysis in Section 5.2.3. The exact results, however,
might be different for other iteration counts.

Note that we do not claim that certain source code features are the cause for benchmark
instability in Section 6. RQ 2 is about finding the most important features for the prediction
and not showing causality. Such a causal relationship would require a different experiment,
which is out of scope of this paper.

Since our dataset is relatively small, i.e., ≥ 3,620 instances, we employ a repeated k-fold
cross validation approach, for a total of 300 prediction observations for every combination
of model, iterations i, and thresholds t . With such a number of observations, we can apply
statistical tests to mitigate the risk of spurious differences. Moreover, the relatively small
dataset and the high number of features, i.e., 116, might result in overfitting the models.
Creating larger benchmark execution datasets is often infeasible due to the long runtimes.
Alternatively, applying AutoSpearman to select a subset of the features reduces the risk of
overfitting; our results show that the prediction performance is at worst minimally reduced
for the best models.

We also apply pre-processing operations to our data, i.e., standardization, feature selec-
tion based on variance, removal of correlated features with AutoSpearman, and class
re-balancing with SMOTE, and RQ 1.3 investigates the impact of pre-processing on the pre-
diction performance (see Section 5.2.4). However, a sensitivity analysis of more techniques
is infeasible, considering the large number of classifiers used in our study. As in the case of
hyper-parameters optimization, which we did not apply in this study, our view is that sim-
ple classifiers can already be competitive for this task. However, a sensitivity study on the
effects of pre-processing and tuning on benchmark instability prediction is an avenue for
future work.
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External Validity. Generalizability is mostly concerned with regard to the selected study
objects. Our study only considered benchmarks written in Go; consequently, our results
do not necessarily translate to benchmarks written in other programming languages. The
results potentially also do not extend to other Go projects, which are not part of our study.
With 230 projects having 4,461 benchmarks, we have an extensive set of benchmarks and
projects to draw conclusions from.

We study benchmarks on function/statement granularity, often also called microbench-
marks or performance unit tests (Stefan et al. 2017; Laaber and Leitner 2018). The results
presented here do not generalize to other forms of performance tests, such as load tests or
system/application-level benchmarks, or functional unit tests used for performance.

The benchmark result variability in our study considers execution time as its perfor-
mance metric. Execution time is the standard performance metric for benchmarks on this
granularity, whereas load tests, system-benchmarks, or profilers often also consider memory
performance, I/O, lock contention, or other performance metrics. A careful reader should
not assume that our results transfer to these other performance metrics.

Finally, other machine learning algorithms, which are not part of our 11 algorithms under
study, might perform differently in terms of prediction as well as sensitivity to the number
of iterations i, the threshold value t , or different measures of variability. We aimed at a
diverse set of algorithms to increase generalizability among binary classifiers. Multiclass
classification, clustering, and regression algorithms are likely to show different results to
binary classifiers and are out of the scope of this work.

9 RelatedWork

Particularly related to our study are works dealing with (1) performance variability, (2)
performance bugs, (3) performance testing, and (4) performance impact prediction. We will
discuss these four aspects in the following.

9.1 Performance Variability

The performance variability of experiment results, such as benchmarks, is a well-known
challenge in performance engineering. Georges et al. (2007) outlined a rigorous method-
ology to measure performance of dynamically compiled languages like Java. They report
on effects of dynamic compiler optimizations influencing performance measurements and
show that measurement variability is often around 3%. Even if a rigorous methodology
is followed, measurement bias is common (Mytkowicz et al. 2009; Curtsinger and Berger
2013; de Oliveira et al. 2013). Mytkowicz et al. (2009) report that different environment
variable sizes, such as simply having a longer user name, impacts performance measure-
ments. Curtsinger and Berger (2013) identify that layout of code and memory, i.e., stack
frames and heap objects, impacts the results of performance experiments by as much as 10%.

To reduce measurement bias and benchmark variability, it is best practice to repeat
measurements on the different levels that introduce measurement uncertainty (kalibera
and Jones (2012, 2013) and randomize factors influencing the measurement (Curtsinger
and Berger 2013; de Oliveira et al. 2013). Moreover, randomly interleaving benchmarks
across multiple trials (Abedi and Brecht 2017; Laaber et al. 2019) or executing bench-
marks, that need to be compared with each other, in parallel on different CPUs of the same
machine (Bulej et al. 2020) are novel techniques to handle environment-induced variabil-
ity. The variability can be due to co-located tenants, hardware, OS specifics, or source
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code (Maricq et al. 2018; Laaber et al. 2019). In particular, virtualized (Arif et al. 2018) and
cloud (Iosup et al. 2011; Gillam et al. 2013; Leitner and Cito 2016) environments suffer
from performance variability when used as performance execution environment.

Our work draws inspiration from these works and utilizes source code features, one cause
of performance variability, to predict whether a benchmark will be unstable, to ultimately
decide whether more repetitions (e.g., iterations) are required. Although our approach’s features
are solely extracted from source code, the idea is that they act as proxies for performance
variability rooted in non-source-code factors, such as I/O, memory access through variables, or
non-deterministic pseudo-random generators and concurrency constructs. Both our sensitiv-
ity analyses from RQ 1.1 and RQ 1.2 acknowledge the fact that performance measurements
are imperfect, and they report on the impact on prediction performance. The sensitivity anal-
ysis on the threshold t of what is considered a stable or unstable benchmark bases its values
to investigate on the experience reported in the papers mentioned (see RQ 1.1).

Recently, He et al. (2019) and Laaber et al. (2020) introduced techniques for system-
benchmarks and microbenchmarks to stop benchmarks once the result variability is unlikely
to change with more repetitions. Our approach augments these techniques by identifying
the benchmarks that are unstable, before execution.

9.2 Performance Bugs

There is an abundance of research on characteristics of performance bugs and how to auto-
matically detect them. In this context, a performance bug can be a slowdown, an increase in
memory consumption, reduced throughput, or excessive I/O operations.

Jin et al. (2012) find that performance bugs are often related to function calls, synchro-
nization of concurrent computation, data structures, and API misuses. Selakovic and Pradel
(2016) study performance bugs in JavaScript and find that they are often caused by ineffi-
cient APIs and loops, as well as unnecessarily repeated executions. Nistor et al. (2013, 2015)
identify similar memory access patterns and wasted loops as root causes. Sandoval Alco-
cer and Bergel (2015) and Sandoval and Alcocer et al. (2016, 2020) discuss performance
problems related to programming language features, such as function calls, conditionals,
and (heavy) object creation. Often synchronization and concurrency are root causes for
performance problems (Alam et al. 2017; Yu and Pradel 2017). Other studies conclude
with similar observations of where performance bugs stem from Zhao et al. (2020) and
Mazuera-Rozo et al. (2020).

Our approach incorporates the root causes identified in these studies as features in our
prediction model. The simple counting of feature occurrences is in line with the finding that
unnecessary repetition of source code constructs are causes for performance bugs. Similar to
Liu et al. (2014), our approach also checks for potentially performance-variability-inducing
API calls in the call graph of a benchmark. However, all these studies characterize and (some-
times) identify performance bugs, whereas our approach and study centers around bench-
mark (in)stability prediction in terms of its result variability.

9.3 Performance Testing

Performance testing is part of measurement-based performance engineering (Woodside
et al. 2007), which aims to ensure catching performance degradations of software systems.
Literature usually focusses on system-scale or method/statement-scale performance tests,
often called load testing (or application/system benchmarking) and microbenchmarking (or
performance unit testing), respectively.
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Traditionally, research on performance testing focussed mostly on load testing, such
as identifying problems and reporting on case studies (Weyuker and Vokolos 2000;
Menascé 2002; Jiang and Hassan 2015). More recent work focussed on industrial applica-
bility (Nguyen et al. 2014; Foo et al. 2015; Chen et al. 2019) and reducing the time spent in
load testing activities (AlGhamdi et al. 2016; AlGhamdi et al. 2020; He et al. 2019).

Microbenchmarking, which is the focus of our study, has significantly gained traction
in recent years. Leitner and Bezemer (2017) and Stefan et al. (2017) empirically study the
state in OSS projects and identified gaps that require addressing from research. In particu-
lar, the complexity of performance testing activities and lack of tooling seem to be a hurdle
to overcome (Bezemer et al. 2019). Horký et al. (2015) utilize benchmarks to increase
performance-awareness through documentation, and Bulej et al. (2012, 2017a) introduce a
declarative form of specifying performance assumptions without the need for manually writ-
ing benchmarks. Sandoval Alcocer and Bergel (2015) and Chen and Shang (2017) explore
performance changes in evolving software and find that code changes often introduce per-
formance variation. Laaber and Leitner (2018) and Laaber et al. (2019) assess benchmarks
for their applicability in CI and study their results when executed on cloud infrastructure.
Damasceno Costa et al. (2019) study bad practices in microbenchmark implementations and
show that they significantly impact their results.

Our approach is orthogonal to the research outlined above. It contributes to one of the
major challenges of performance testing, i.e., the lack of tooling for performance testing.

9.4 Performance Impact Prediction

Previous research investigated the impact of “new situations” on software performance.
These can be in regression testing upon a new commit or about the effects of running a
performance experiment under different conditions.

Two techniques of regression testing that are extensively studied for unit testing (Yoo
and Harman 2012), i.e., RTS and test case prioritization (TCP), have recently become sub-
ject of investigation for performance testing. In terms of selection (RTS), they either predict
whether a commit potentially introduces a performance regression (Jin et al. 2012; Huang
et al. 2014; Sandoval Alcocer et al. 2016; 2020) or whether a benchmark is affected by a
code change (de Oliveira et al. 2017; Alshoaibi et al. 2019). Jin et al. (2012) build a rule-
based technique to detect these commits, whereas Huang et al. (2014) and Sandoval and
Alcocer et al. (2016, 2020) employ a performance cost model. Regarding benchmark selec-
tion, de Oliveira et al. (2017) use lightweight static and dynamic source code indicators
which are combined with logical operators. Alshoaibi et al. (2019) reuse their indicators,
define the selection as an optimization problem, and employ genetic algorithms to pre-
dict whether a benchmark will be affected. In terms of prioritization (TCP), Mostafa et al.
(2017) rank the execution order of benchmarks according to their predicted performance
change size, inferred from a performance cost model. As already mentioned in Section 7.1,
regression testing is one context where we foresee our approach to be applied. Different
from the works above, our approach (1) targets benchmark stability rather than the perfor-
mance impact and (2) uses a machine learning model rather than more traditional cost and
inference models.

The second area of performance impact prediction focusses on how software (or a
benchmark) behaves when executed in different environments. Gao and Jiang (2017) build
ensemble models to predict the performance variation of load tests in different envi-
ronments. Wang et al. (2018) utilize resource profiles of performance tests and cloud
performance distributions to estimate how an application will behave when deployed
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in cloud environments. Scheuner and Leitner (2018) employ a linear regression model
to predict the response time of an application deployed in the cloud based on system
microbenchmarks run on the respective cloud instance. All three of these predict the per-
formance based on resource profiles from where the software (or benchmark) is executed.
Whereas our approach is fully static and leverages the idea that certain source code fea-
tures contribute more to performance variability than others, i.e., concurrency, expensive
API calls, or randomized algorithms. As discussed in Section 7, dynamic information,
such as resource profiles, could enhance our approach and potentially improve prediction
performance.

10 Conclusions

In this paper, we introduced a static approach to predict whether a software benchmark will
have stable or unstable results, without having to execute it. It uses 58 statically-computable
source code features, extracted for the benchmark code as well as the code called by the
benchmark with AST parsing and static call graph. The features are related to (1) meta
information, e.g., LOC, (2) programming language elements, e.g., conditionals or loops,
and (3) potentially performance-impacting standard library calls, e.g., file and network I/O.

We assessed the effectiveness of our approach with an empirical experiment on 230 open-
source software Go projects that contain a total of 4,461 benchmarks. Their combination and
the usage of machine learning classifiers can be used for effective prediction. We built and
compared 11 different binary classification models, of which Random Forest performs best,
with a median prediction performance of AUC ranging from 0.79 to 0.90 and MCC ranging
from 0.43 to 0.61, depending on the concrete approach parameterization. Moreover, we find
that 7 features related to meta-information, slice usage, nested loops, and synchronization
APIs are individually important for good predictions. The combination of all features of the
called source code is paramount for our model, while the combination of features of the
benchmark itself is less important.

These results show that predicting benchmark instability with only static features is effec-
tive. We envision our approach to enable selecting reliable benchmarks in regression testing
scenarios; help developers to spot potentially low-quality benchmarks; improve unsta-
ble results of benchmarks by increasing their number of repetitions before execution; be
included in scenarios where repeated benchmark execution is infeasible (e.g., within search-
based benchmark generation) or impossible (e.g., to statically assess benchmark quality on
GITHUB), and warn developers if new benchmarks or existing benchmarks executed in new
environments will be unstable.
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Siegmund N, Grebhahn A, Apel S, Kästner C (2015) Performance-influence models for highly configurable
systems. In: Proceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM,
ESEC/FSE. https://doi.org/10.1145/2786805.2786845

Song L, Lu S (2017) Performance diagnosis for inefficient loops. In: Proceedings of the 39th IEEE/ACM
International Conference on Software Engineering. IEEE, ICSE. https://doi.org/10.1109/icse.2017.41
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