
On-the-Fly Syntax Highlighting using Neural Networks

Marco Edoardo Palma
University of Zurich

Switzerland
marcoepalma@ifi.uzh.ch

Pasquale Salza
University of Zurich

Switzerland
salza@ifi.uzh.ch

Harald C. Gall
University of Zurich

Switzerland
gall@ifi.uzh.ch

ABSTRACT

With the presence of online collaborative tools for software devel-

opers, source code is shared and consulted frequently, from code

viewers to merge requests and code snippets. Typically, code high-

lighting quality in such scenarios is sacrificed in favor of system

responsiveness. In these on-the-fly settings, performing a formal

grammatical analysis of the source code is not only expensive, but

also intractable for the many times the input is an invalid derivation

of the language. Indeed, current popular highlighters heavily rely on

a system of regular expressions, typically far from the specification

of the language’s lexer. Due to their complexity, regular expressions

need to be periodically updated as more feedback is collected from

the users and their design unwelcome the detection of more com-

plex language formations. This paper delivers a deep learning-based

approach suitable for on-the-fly grammatical code highlighting of

correct and incorrect language derivations, such as code viewers

and snippets. It focuses on alleviating the burden on the devel-

opers, who can reuse the language’s parsing strategy to produce

the desired highlighting specification. Moreover, this approach is

compared to nowadays online syntax highlighting tools and formal

methods in terms of accuracy and execution time, across different

levels of grammatical coverage, for three mainstream programming

languages. The results obtained show how the proposed approach

can consistently achieve near-perfect accuracy in its predictions,

thereby outperforming regular expression-based strategies.

CCS CONCEPTS

• Computingmethodologies→ Neural networks; • Software

and its engineering → Automated static analysis.

KEYWORDS

Syntax highlighting, neural networks, deep learning, regular ex-

pressions

ACMReference Format:

Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall. 2022. On-the-

Fly Syntax Highlighting using Neural Networks. In Proceedings of the 30th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’22), November 14ś18, 2022,

Singapore, Singapore.ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3540250.3549109

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549109

1 INTRODUCTION

Today, software developers often turn to online web applications

for support on several aspects concerning their source code manip-

ulation tasks. Source code repository hosting services, e.g., GitLab,

BitBucket, are typically concerned with managing version control

instances, DevOps lifecycles, code reviews, continuous integra-

tion, and deployment pipelines. Some extend these functionalities

by including issue tracking, knowledge bases, and chats, among

other non-software-related features. Also, some Q&A platforms,

e.g., StackOverflow, provide the possibility to query the commu-

nity about code-related issues.

With the ability to boost productivity [32], code syntax high-

lighting (SH) is popular in online scenarios such as these described.

Formally, SH is a form of secondary notation in which portions of

the text are displayed in different colors, each representing some

feature of the language. Due to the majority of features only being

inferable from the grammatical structure of the input, the task of

deciding what color should annotate what portion is non-trivial.

Therefore, resolvers infer the color assignments from some internal

grammatical representation of the code. Intuitively, the more this

analysis restricts the belonging of a subsequence to some grammat-

ical productions, the higher is the accuracy of its computation. As a

result of the higher the number of such productions it can recognize,

and therefore annotate, the higher is the strategy’s coverage.

Unfortunately, there are two main challenges in performing such

analysis in this context. First, there is a varying level of grammatical

validity of the code highlighted. Due to online code being embed-

ded in multiple contexts, its grammatical correctness cannot be

guaranteed. Indeed, although in version control iterations source

code might tend towards being of higher quality, in other cases,

such as discussions in code review or chats, this might not carry

a valid language derivation, i.e., an Abstract Syntax Tree (AST)

might not be derivable [18, 31, 37ś39]. This inherently induces SH

strategies in being less reliant on the ability to derive a complete

and well-formed representation of the code.

A brute-force (BF) approach towards performing accurate SH is

to use the language’s grammar for the derivation of ASTs, binding

a color to each token, based on its location in the tree. However, not

only is this often a computationally expensive strategy, but it also

cannot be easily ported to effectively or deterministically recover

errors in scenarios of severely incorrect or incomplete language

derivations, e.g., code snippets [11, 12, 22]. Also, given the rich

syntax of modern mainstream programming languages, parsing

strategies better suited for dealing with noisy language derivations,

e.g., island parsing, would expect developers of SH tools to produce

viable encodings of the languages’ original grammars [24, 25], while

still requiring to execute a parsing routine.

As for the second challenge, only a small time delay is allowed

for this frequent process to terminate, which BF approaches might

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.

269

http://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-3300-4828
https://orcid.org/0000-0002-8687-052X
https://orcid.org/0000-0002-3874-5628
https://doi.org/10.1145/3540250.3549109
https://doi.org/10.1145/3540250.3549109
https://doi.org/10.1145/3540250.3549109


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall

(a) Pygments, 64.76% character accuracy. (b) BRNN(16), 100.00% character accuracy.

Figure 1: An example of task T4 of Java SH, using the state-of-practice and proposed approaches.

exceed. łOn-the-flyž SH refers to code being highlighted as this is

being retrieved by the user. The adherence to such computational

schema results in SH resolvers having an indirect impact on user ex-

perience [16, 19]. For the above-mentioned reasons, state of practice

SH strategies are mainly built around (per-language) ad-hoc lexers,

which heavily rely on systems of regular expressions (regexes). Such

design allows to achieve excellent computational performances

whilst providing a SH capable of capturing some contained number

of grammatical structures and accuracy levels. An example of the

effects of this strategy is visible in Figure 1. Here, the SH produced

by a popular regexes-based resolver (Figure 1a) is compared to one

producing perfect highlighting for a grammatical coverage resem-

bling those found on Integrated Development Environments (IDEs)

(Figure 1b). The low coverage of the former is perceived by its inabil-

ity to detect identifiers for types, method and variable declarations.

In addition, it cannot distinguish severely distant grammatical con-

structions such as field accesses, method invocations, and reference

types. In turn, this contributes to low annotation accuracy. More-

over, the specification of these lexers is often far from that of the lan-

guage, inducing a tedious and error-prone regexes design process,

with the generalizability of the final product relying on the manual

compilation of test cases and multiple iterations of user feedback.

Therefore, motivated by these challenges and shortcomings, it

is desirable to have an approach that is: (1) simple to implement,

providing a deterministic, reusable, and low-effort process for de-

velopers to create and customize highlighters; (2) able to reach high

grammatical coverages, enabling efficient highlighting of more com-

plex grammatical structures than those computed in nowadays

online highlighters; (3) highly accurate, closely reproducing the

highlighting accuracy of a formal AST analysis process; (4) input

flexible, reaching high accuracy on correct and incomplete/invalid

derivations of the target programming language.

This paper proposes a solution that exploits lightweight Recur-

rent Neural Networks (RNNs) models to encode the highlighting

behaviors of formal SH brute-force (BF) methods. A BF approach is

user-defined and exploits the language’s existing lexing and pars-

ing tools to assign each token in the source code to a SH class, i.e.,

an abstraction of the SH color, based on its location in the AST.

Therefore, it is a formal process, which, if well-formed to match the

intended highlighting scheme, is always guaranteed to generate

the correct SHs for files carrying a valid derivation of the language.

After having used BF to compile highlighting assignments (SH)

for multiple sample files, an RNN is trained to bind sequences of

tokens to sequences of SH classes. The training process only occurs

once and produces an RNN model that is reusable for all future

SH tasks. For the training hardware used for the experiments in

this work, all the proposed models can be trained in the order of

minutes, and comfortably within the one hour mark. In the case

of the non-bidirectional flavors, the delay is cut in half compared

to their bidirectional counterpart. This delay substitutes to today’s

state-of-practice resolvers which involve the development of te-

dious systems of Regex. Once trained, the RNN computes the SH

of source code by inferring SH classes to the token stream produced

by the language’s original lexer.

This novel approach to on-the-fly SH is tested with regards to

its accuracy across four types of grammatical coverages, explor-

ing the detection of different combinations of lexical features and

various grammatical constructions for identifiers, declarations, and

annotations. To support the suitability of the proposed approach in

the deployment scenarios previously envisioned, this is also tested

with regards to its execution time when predicting. Moreover, the

same metrics are measured across three mainstream programming

languages: Java, Kotlin, and Python. All the metrics are also com-

puted for a highly popular SH tool, i.e., Pygments [8], based on

the well-establish regex strategy used by a large number of online

vendors such as GitLab, BitBucket, andWikipedia.

To summarize, the main contributions of this paper are:

• a dataset for SH benchmarking for three popular programming

languages, i.e., Java, Kotlin, and Python, obtained through

formal BF strategies;

• the design of an Neural Network (NN)-based approach for SH,

with near-perfect highlighting accuracy and suitable prediction

delays;

• the comparison with the state of practice SH strategy in terms

of accuracy, coverage, and execution time;

• the performance analysis of the approaches in case of incorrec-

t/incomplete source codes.

The implementation, benchmark datasets, and results are avail-

able in the replication package [27] and published at the address

https://hlnn.netlify.app.

The rest of this paper is structured as follows. Section 2, presents

the design of the approach. Section 3 describes the experimental

setup, whereas Section 4 shows and discusses the results. Section 5

surveys the related work, and Section 6 concludes with a summary

of the findings and contributions, as well as an outlook on future

research in this area.

270

https://hlnn.netlify.app


On-the-Fly Syntax Highlighting using Neural Networks ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

2 APPROACH

The strategy designed to tackle the challenges raised in this paper

aims at deriving Neural Networks (NNs) capable of statistically in-

ferring the perfect behavior of brute-force (BF) models. For this pur-

pose, an oracle of SH solutions is generated using the language’s BF

resolver. The following section presents in detail the specification

of both BF and NN models, as well as providing some motivations

for the design.

2.1 Oracles for SyntaxHighlighting

Brute-force (BF) refers to the deterministic process of producing the

correct token classification, or syntax highlighting (SH), for some

language derivation from which an Abstract Syntax Tree (AST) is

derivable. These are the sole components for the generation of the

SH oracle and are created by reusing the language’s existing lexing

and parsing tools. The two components respectively represent the

input source code as a token stream and order them into an AST.

Subsequently, a tree walker exploits the structural information of

the AST to assign each token to its SH class. This process assumes

that a BF resolver is guaranteed to compute the correct SH of any

valid input file, hence setting the highest achievable highlighting

accuracy for any coverage specification. It is important to note that

such a design merely requires the developer to implement a walker

consisting of only a handful of detection rules, as reported in the

replication package [27]. As a result, the process of producing a BF

highlighter is deterministic and only asks for a basic understanding

of the language’s grammar, as it already exists. It is a significant

departure from the tedious and error-prone workflow of defining

systems or regular expressions.

The BF algorithm is integral in the generation of the oracle, i.e., a

collection of language’s source code files and respective SH. For this

purpose, each sample file is piped through the language’s lexer and

then tokenized. From each token a new entity is derived in the form:

ETA= {𝑖𝑠 ,𝑖𝑒 ,𝑡,𝑡𝑟 } where the Extended Token Annotation (ETA) object

is a tuple of: (1) 𝑖𝑠 and 𝑖𝑒 , denoting the token’s character start and

end indexes respectively, according to the file that contains it; (2) 𝑡 ,

the exact text the token references; (3) tr, the token’s Token Rule, en-

coded as a natural number, or in other words, the ID the language’s

lexer consistently assigns, through a dictionary, to tokens of the

same type, among all types defined in the lexer (e.g., a token of text

¼ might corresponds to a lexer type OpEN BRACE hence to the token

rule, or unique ID, 20). For example, Sµ³ª¯¨ ¢¯¨ = "J¢·¢.";might re-

sult in the set of ETA: ¼0, 5, Sµ³ª¯¨, Q02 ¾, ¼7, Q0, ¢¯¨, Q02¾, ¼Q2,

Q2, =, 73¾, ¼Q4, 20, "J¢·¢.", 55¾, and ¼2Q, 2Q, ;, 63¾. This repre-

sentation allows the generalization of SH patterns based on the

sequence of language features in the form of token types. It does it

by abstracting away the otherwise łnoisež, injected by the tokens’

specific text features, transparent to the parsing of the file.

Subsequently, the language’s parser organizes the tokens into

an AST. Walking the AST through patterns such as, Visitor or Lis-

tener, all previously computed ETAs are mapped to Highlighted

Extended Token Annotation (HETA) objects. These extend ETAs to

include a Highlighting Class hc, corresponding to the grammatical

SH class to which the token being referenced is part of. Tokens

that are not part of any grammatical construction are bounded

to the unique hc ANy, representing text, i.e., no highlighting. As a

result HETA= {𝑖𝑠 ,𝑖𝑒 ,𝑡,𝑡𝑟,ℎ𝑐}. Continuing on the above-mentioned

example, the following HETA set might be computed as: ¼0, 5,

Sµ³ª¯¨, Q02, Q¾, ¼7, Q0, ¢¯¨, Q02, 2¾, ¼Q2, Q2, =, 73, 0¾, ¼Q4, 20,

"J¢·¢.", 55, 3¾, ¼2Q, 2Q, ;, 63, 0¾, where hc of: 0 decodes to some

not highlighted tokens, Q to type identifiers, 2 to variable declaration

identifiers, and 3 to string literals.

A BF resolver for some language 𝐿 is a function of the form:

𝑏𝑙𝐿 : {𝑐},𝑙𝑒𝐿,𝑙𝐿,𝑝𝐿,𝑤𝑠𝐿 →{HETA}, where: (1) for the lexer encoder

𝑙𝑒𝐿 :𝑙𝐿,{𝑐}→{ETA}, (1.1) 𝑙𝐿 is the lexer of 𝐿, (1.2) {𝑐} is the charac-

ter set of the input file, (1.3) {ETA} the resulting set of ETAs. (2) for

the parser 𝑝𝐿 :𝑙𝐿,{𝑐}→𝐴𝑆𝑇𝐿 , 𝐴𝑆𝑇𝐿 is the derived AST of the input

file, (3) and for the walking strategy𝑤𝑠𝐿 :𝐴𝑆𝑇𝐿,{𝐸𝑇𝐴}→{HETA},

{HETA} is the oracle for the input’s file

2.2 RNNs for SyntaxHighlighting

In order to efficiently perform SH for a given file, this approach

seeks to obtain a Neural Network (NN) model capable of mapping

a sequence of token rules {𝑡𝑟 } to a sequence of SH classes {ℎ𝑐}, as

performed by some BF resolver. Hence, the process of computing

SH becomes a statistical inference on the expected grammatical

structure of the token sequence in input.

The motivation behind the use of NNs for such a task relies

on the highly structured nature of programming languages’ files.

Indeed, the flow of the incoming characters is: (1) represented as

an entity stream selected from a finite set of terminal symbols {𝑡𝑟 },

and (2) ordered by an underlying pure ordering function as a formal

grammar. SH can be viewed as the grammar for which there always

exists a correct language derivation whenever there exists a valid

derivation of the original grammar. This is true as for some gram-

mar 𝑔, its highlighter is the grammar ℎ𝑔 that sequentially parses

sub-productions 𝑠ℎ𝑔 of 𝑔, which are enough to discriminate a tr sub-

sequence to some target highlighting construction; or otherwise,

map every token not consumable by any 𝑠ℎ𝑔 to a terminal symbol. In

this novel approach to SH, the effort of producing such SH grammar

is lifted from the shoulders of the developers and instead delegated

to the NN which infers it from the behavior observed from some BF.

The task of SH is reduced to a łsequence-to-sequencež translation

task [36], i.e., from {𝑡𝑟 } to {ℎ𝑐}.

To tackle this new problem reduction, the following proposes

the use of Recurrent Neural Networks (RNNs) [9], for the learning

of SH sequence bindings. These offer a base approach to sequence

translation by iterating through each value of the input sequence

while outputting a unit of translation and carrying forward differ-

entially optimized information to aid the prediction of future inputs.

Furthermore, for those grammars producing sequence distributions

for which the binding of an hc for some tr may require the look

ahead of an arbitrary number of tokens, this approach resorts to the

use of Bidirectional Recurrent Neural Networks (BRNNs) [33] in

place of traditional RNNs. Indeed, these also aim at addressing this

specific issue by behaving as traditional RNNs, however inferring

the translation of each input from the extra information carried

from navigating the input sequence in reverse. Finally, the model is

designed to output for each tr, a categorical probability distribution

over the set of available hc. The absolute values of such distributions

are normalized by a softmax function, resulting in the sequence

of hc for some sequence of tr being the set of max values of the

271



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall

distribution computed for each tr. Consequently, with regards to

SH, an RNN model𝑀 is a function of the form:𝑀 : {𝑡𝑟 }→{ℎ𝑐}.

Although base RNNs are no longer the state of the art in many

translation applications, with current solutions mostly utilizing

convolutional layers, the encoder-decoder architectures, or relying

on the attention mechanism [4, 5, 14, 21, 36, 42], these still offer

a lightweight model compared to more recent techniques. More-

over, as it is later shown, the number of well-formed structural

features NN are expected to infer from the SH oracle samples is

small. It means that the extra infrastructure of deeper networks

would result in no appreciable SH accuracy increases, but rather in

computational overheads and non-trivial hyperparameter/training

configurations. Instead, RNNs and BRNNs provide a baseline solu-

tion for this novel challenge, delivering predictions with contained

overheads. In addition, the training behavior of such models allows

this approach to maintain a constant training configuration. Not

only does it result in stable performances across different languages

and coverage settings, but also in a solution that is accessible to a

broader audience of developers [3].

3 EXPERIMENTS

The effectiveness of this proposed approach is evaluated in terms

of its prediction accuracy and speed for four types of SH coverage.

Moreover, in the interest of providing a clearer view on how the

performances of this approach might generalize, all experiments

were conducted on threemainstream programming languages: Java,

Kotlin, and Python. To represent the state of practice approach

using regexes, the Pygments SH library [8] is also evaluated against

the same metrics. Pygments is highly popular in online and offline

scenarios and found in an array of tools such asGitLab, BitBucket,

andWikipedia. The following research questions are considered

for the formal analysis of the solution:

RQ1 How accurately can the proposed NN approach replicate the SH

behaviour of a BF model?

This question aims at evaluating, in terms of SH accuracy, for all

the defined coverage levels, to what extent the proposed approach

can be a substitute to pure brute-force methods.

RQ2 How does the proposed NN approach compare to nowadays state

of practice, or regex, approaches?

This question needs the computation of the SH accuracy, for all the

defined coverage levels, to understand to what extent the proposed

approach can be a substitute to the state of practice.

RQ3 How do the speed of computation of the three approaches, NN,

BF , and regex compare?

It provides insights into the time delays required when performing

SH with the proposed NNs, regex-based, and BF approaches.

RQ4 How accurately can the proposed NN approach perform SH of

incomplete language derivations, compared to the regex and BF

approaches?

An advantage of both the proposed and regex-based approaches is

their natural portability to estimate SH schemes for incorrect/in-

complete sequences of tokens. Hence, this question evaluates, in

terms of accuracy, for all the defined coverage levels, how these

approaches compare to the theoretical perfect SH solution.

3.1 Coverage Tasks Definition

Although an infinite number of coverage schemes could be gener-

ated and tested for, the initial iteration of this novel approach to

SH investigates the highlighting of language features as done in

the most common IDEs for the selected languages, such as IntelliJ

IDEA, PyCharm, and Visual Studio Code.

Each Coverage Task (T ) is therefore created by combining one

or many of the following language feature groups. Each feature

represents a unique hc (Highlighting Class, see Section 2.1), or in

visual terms, a color.

L¦¹ª¤¢: this group includes token classes that are lexically identi-

fiable, meaning that for a given token, nothing but its tr value is

required to bind it or not to any of such classes:

• kEywORD, thereby only referring to strong keywords, as soft key-

words may also be used as user-defined identifiers in some

allowed language contexts. In this class, also tokens of primi-

tive types, e.g., ª¯µ, §°¢µ, are included if the language identifies

them as such;

• LITERAL, any literal value of the language, e.g., numbers (integers,

floating, binary, hexadecimals), boolean values (µ³¶¦, §¢´¦), null

constants (¯¶, N°¯¦);

• ChAR STRING LITERAL, any user-defined string or character liter-

als, including those part of string interpolation sequences;

• COMMENT.

For this group, all classes are assigned using the same criterion

that is applied to all the selected programming languages.

I¥¦¯µª§ª¦³: the group includes classes for special types of identifiers:

• TypE IDENTIFIER, matching all the identifier tokens within all

the languages’ productions representing a type entity;

• FUNCTION IDENTIFIER, all the identifiers used in function or meth-

ods calls;

• FIELD IDENTIFIER, referring to those identifiers that the gram-

mars understand being references to an attribute of an ob-

ject or entity. These are usually preceded by a entity naviga-

tion operator, e.g., in Java’s O£«¦¤µ ° = ¢.£.¤().¥;, £ and ¥ are

such FIELD IDENTIFIER, whereas ¤ might be considered a FUNC-

TION IDENTIFIER.

D¦¤¢³¢µ°³: it includes classes for the classification of token iden-

tifiers that carry the name of new top-level features of programs:

• CLASS DECLARATOR, referencing identifiers bounded to some newly

defined declaration of any form of class, objects, enumerations,

data classes, structures, etc.;

• FUNCTION DECLARATOR, for identifiers bounded to some newly de-

fined method or function;

• VARIABLE DECLARATOR, to some newly defined variable. Note the

exclusion of this class from Python experiments due to its

intrinsic ambiguity of value to identifier assignments.

A¯¯°µ¢µª°¯: this includes the base annotation components:

• ANNOTATION DECLARATOR, as it is common practice to markup an-

notations in all three selected languages, this class references

the token identifiers and prefixed symbols such as the `, of an

annotation.

Finally, hc ANy gathers all tokens not belonging to any of the cat-

egories mentioned above.

272



On-the-Fly Syntax Highlighting using Neural Networks ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Metrics for Java,Kotlin, and Python normalized SH oracles

Metric
Java Kotlin Python

Mean SD Min Median Max Mean SD Min Median Max Mean SD Min Median Max

Chars 6239 11575 0 2932 504059 2455 4385 80 1490 176176 7390 34324 0 3398 3987090

Whitespaces 1207 2417 0 529 72702 575 1276 6 282 47495 1999 12941 0 829 1465856

Lines 190 332 0 94 14628 70 121 1 43 4734 208 873 0 104 89373

Tokens 882 1745 1 371 45229 737 1559 23 327 72484 1161 4997 1 525 448562

From the hc groups, four coverage tasks are defined to evaluate

the flexibility of the RNN approach to comply with some arbitrary

SH coverage. The four Coverage Tasks are defined to demand the

identification of the following groups:

• T1: {ANy}, L¦¹ª¤¢, and D¦¤¢³¢µ°³;

• T2: {ANy}, L¦¹ª¤¢, and I¥¦¯µª§ª¦³;

• T3: {ANy}, L¦¹ª¤¢, D¦¤¢³¢µ°³, and I¥¦¯µª§ª¦³;

• T4: {ANy}, L¦¹ª¤¢, D¦¤¢³¢µ°³, I¥¦¯µª§ª¦³, and A¯¯°µ¢µª°¯.

It is important to note that, for the reported tasks configura-

tion, given the oracle𝑂T4 carrying all of the language classification

groups, the oracle of any other class𝑂T[1..3] can be derived directly

from 𝑂T4 through means of a Task Adapter 𝑇𝐴T4, T[1..3]. For any

task 𝑂Ti | 𝑖∈{1..3} a 𝑇𝐴T4,Ti maps every target class hc to itself if it

is a possible target class for Ti, otherwise to the hc class ANy (text).

More details about the above language groups, and their detec-

tion strategy for all three investigated languages, are available in

the replication package [27].

3.2 Data Collection and Preprocessing

The following describes the procedure produce the datasets used in

the experiments. The full details, together with the downloadable

data, are available in the related replication package [27].

Data mining. In order to generate SH oracles for testing the ap-

proaches with regards to their accuracy, speed of evaluation, and

training of the RNN models, samples for the three programming

languages selected are mined from GitHub’s public repositories,

through GitHub’s Application Program Interface (API). In this

process, the repositories are pulled by filtering per programming

language and sorting by descending order of stars rating. For ev-

ery main branch, files matching the language’s file extension are

downloaded in their natural order.

With the ultimate goal of converting each file to its equivalent

set of HETA, the data collection process filters only files for which

the BF strategy can derive an AST. Of all files, only one instance

of the same token rule (tr) sequence is kept: this prevents giving

an advantage to the RNN approach, which works at a tr sequence

level instead of at a character level. Indeed, two program files might

carry different text but share the same structure; notice how these

two Python code are structurally equal: ¢ = £.¤[3].¥() and ¶ §ª¦¥

= ¶´¦³.§ª¦´[0].¯°³®¢ª´¦¥().

For each programming language, the data collection pipeline

runs until it has sampled 20000 files. This sample size is in the

interest of creating oracles that are both of large statistically mean-

ing, for the average file contents of each language, but could also

allow for the execution of extensive accuracy and performance

testing. Statistics on the number of characters, whitespace, lines

of code, and tokens, of the datasets collected for each language are

summarized in Table 1.

Brute-Force and Oracle Generation. To create an oracle for each

language, given a set of valid input files, a BF method must be

created. As one of the goals of this proposed approach is to reutilize

the existing lexing and parsing strategies, the ANTLR4 [29] parser

generator tool is used, pooling the respective official ANTLR4 lexer

and parser grammars of each language. Using ANTLR4 proved to

be a winning solution to kick-start the creation of all three oracles.

Not only is it a widely popular parser generator, but also used by

official language specifications, such as Kotlin, and benefits of an

active community developing grammars for most of the mainstream

programming languages. However, it is essential to note that the

operability of this approach does not strictly rely on this particular

tool, as any preprocessing program could be used if mildly adapted

to output the required and largely generic oracle information.

The obtained lexers and parsers, of which version details are

available in the replication package [27], are kept largely unchanged.

The most significant changes interest the lexers, which were in-

structed to push the skipped tokens, e.g., comments, through the

lexers’ hidden channel. Such a (minor) modification enables the ap-

proach to obtain tokens for these otherwise dropped entities, which

might still require highlighting, as reported in Section 2. Should this

workflow not be available in a language’s parsing implementation,

or should its introduction cripple the structure of the parser, tokens

can be lexed by a dedicated lexer.

In addition to the pipeline for obtaining the ETAs set and AST

for a given file, a tree walker is created, which aids the conversion

of each ETA into its grammatically highlighted HETA derivative.

Although multiple walking strategies are available, for the high-

lighting of the grammatical features considered in this first iteration

of this novel RNN approach to SH, this can most easily be achieved

through the łlistener pattern.ž It limits the process to providing

highlighting logic for the productions that are expected to contain

tokens belonging to any of the target SH classes. All other tokens

are instead implicitly mapped to the ANy class. As the reporting of

the fine details of such implementations would lead to a large and

mainly uninteresting listing of tree analysis rules, this can instead

be consulted in the replication package [27].

For each language, the BF methods are created for the cover-

age specified by task T4. This leads to the generation of an oracle

carrying highlighting targets for each SH classes present in any

given source files. The Task Adapter method described earlier is

therefore used to derive the oracles for the other sub coverages

of task T1, T2 and T3. This method not only has no effect on the

correctness of the derived oracles but it also avoids the definition

273



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall

of a new tree walker and respective time and space expansion for

computing further oracles.

Data organization. As the proposed RNN approach involves the

training of NNs, it is important to report on what strategies are put

in place to ensure that not only the generalizability of the solution

is verified but that there also exists an unbiased setting when its

accuracy is compared with the other approaches.

For these reasons, the oracles are randomly shuffled and then

split into three folds. Folds ensure that 33 % of the oracle’s samples

are used for testing only, whereas of the remaining 66%, 90% is

reserved for training and 10 % for validation. These three sets never

intersect, according to the data collection strategy employed. More-

over, all folds used in the experiments are constant and persisted.

This helps ensure reproducibility and allows each RNN model to

be compared when trained on equal datasets.

Incomplete files generation. Although both the proposed RNN ap-

proach and the state of practice, based on regexes, are capable of

computing SH for incorrect program files, their accuracy in these

cases cannot be checked exactly, as deterministic oracles for such

files are not always derivable. For this reason, the focus is shifted

from mining for incorrect file derivations towards generating in-

valid language derivations from the set of valid sampled files.

In order to compare the accuracy of the SH computed by the

proposed and regex-based strategies, when fed files carrying incom-

plete (hence invalid) language derivations against the target SH

computed by a pure process with access to required extra file struc-

ture, the files in each test fold are sampled line-wise to generate

one code snippet sized files. These are drawn from the test datasets,

as in this first iteration of this approach, the network is not trained

on these incomplete files but only tested; however, sampling for

training datasets of the folds might have given an unfair advantage

to the RNN approach.

At this stage, it is also important to note that it would not have

been tractable to sample such snippet-sized file from distributions

of natural snippets generating processes, as the BF method would

not have been available for the formal computation of the correct

SH, for the reasons highlighted above. Therefore, with the target

number of newly generated files of 5000 from each fold test set,

thus 15000 per language, each test file is drawn randomly, and from

it, a random sub-sequence of lines is chosen.

The lengths of the snippets are drawn normally according to

the language’s mean, standard deviation, minimum and maximum

number of snippets lines, determined by number of lines found by

querying the StackExchange Data Explorer [35], focusing on

snippets from StackOverflow. In particular, at the time of the

experiments, these numbers were (mean, standard deviation, min-

imum, maximum): 17.00, 28.75, 1, and 1117 for Java; 15.00, 22.05,

1, and 703 for Kotlin; 14.00, 20.39, 1, and 1341 for Python.

Both test files and lines are sampled with replacement. Given

the lines selected, the process gathers the set of HETAs in range

and produces a new oracle instance.

3.3 Compared Approaches

Multiple variations of baseline RNNs models are investigated.

An initial configuration for the RNNs and training was derived

by improving the convergence of the networks on the validation

set of only the first fold of the Java dataset. The initial embedding

layer was kept at 128, i.e., the smallest power of two larger than

the number of token ids for the languages, while the hidden units

were added in increasing power of two. With a constant learning

rate of 10−3 and Adam optimizer, 16 and 32 (B)RNNs were found

to produce near-perfect accuracy, with the latter not improving

in wider models. Accuracy converged after the second epoch. A

final investigation involved the common practice of reducing the

learning rate after convergence by a factor of 10, i.e., 10−4. It fur-

ther helped improve the accuracy of the model, which again was

observed to converge within the following two epochs.

As a result, the RNN models evaluated consist of a fixed 128

embedding layer. The output of the embedding layer is mapped to

a single layer RNNs or BRNNs, of widths evaluated among 16 and

32 hidden units. The output of all the RNNs or BRNNs is passed

through a fully connected linear layer reducing it to a categorical

distribution of the available hc, depending on the Coverage Task.

This results in the testing of four models, identified by its direction-

ality and width of RNN layer: RNN(16), RNN(32), BRNN(16), and

BRNN(32). Every model is trained sequentially on each training

sample, with cross-entropy loss and Adam optimizer. The training

session for any SH RNN, language and coverage, was accordingly

set to train for two epochs with a learning rate of 10−3, and for a

subsequent two epochs with a learning rate of 10−4. It is in respect

of the approach’s initial guarantee of delivering a training config-

uration capable of achieving the performance advertised without

the tweaking of the training session by expert developers. All mod-

els commence the training process from a randomly initialized

state, according to the deep learning framework utilized, i.e., Py-

Torch [30], while a constant seed ensures the reproducibility of

the experiments.

To contextualize the performances produced by the RNNs ap-

proaches, the vastly popular and well-established regex-based syn-

tax highlighter Pygments is tested [8] using its latest available

version at the time of testing 2.10.0 . In the following, Pygments

is being referred to as Regex. Its output was manually adjusted

to output the same classes included in T4, of which details can be

found in the replication package [27]. Hence, the same TaskAdapter

used during the conversion of the oracle to any other task is used

to map each Pygments’ prediction to its task-specific class.

Finally, the same BF methods used for the generation of the or-

acles are reused for the outlined comparisons with the RNNs and

regex-based approaches. The use of ANTLR4 is not only induced

by the large availability of language grammar, but also by its highly

efficient LL(*) parsing [28] strategy, and native error recovery logic,

both of which undermine the real-world performance advantage

of, otherwise theoretically regarded as most efficient, Parsing Ex-

pression Grammar (PEG) parsers [13] in both fronts [6, 17, 22].

3.4 EvaluationMetrics

The quality of an SH can be measured with regards to its coverage,

accuracy, and speed, described in the following.

Coverage. The absolute number of unique grammar constructions

the highlighter is able to recognize.

274



On-the-Fly Syntax Highlighting using Neural Networks ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Accuracy. Given a coverage specification, the degree to which the

highlighter can bind each character in the input text to its cor-

rect SH class. It also resolves the issue of BF and Regex strategies

possibly producing different tokenizations of the same file.

Speed. The time delay for the computing of SH. Prediction speed

for all methods evaluated during the experimentations is measured

as the absolute time in nanoseconds required to predict the SH of

an input file once this has been supplied. For each SH method, the

following time delays are measured:

• BF: the time to natively parse the input file and perform a SH

walk of the obtained AST;

• Regex: the time to compute the output vector of SH classes,

once given the file’s source text, but excluding the time required

to format the output to any specification. The latter is achieved

by defining a new Pygments Formatter object which accepts

the computed SH, but does not invest computational time into

outputting it, hence removing the added time complexity any

specific format might introduce, thereby highlighting the com-

plexity of the approach’s underlying SH strategy;

• RNNs: the time for the ANTLR4 inherited lexer (the same used

by the BF approach) to tokenize the input file into a sequence of

token rules, plus the time for the RNN model to create the input

tensor, and predict the complete output vector of SH classes.

3.5 Execution Setup

All RNN models are trained on a machine equipped with an AMD

EPYC 7702 64-Core CPU clocked at 2.00GHz, 64GB of RAM, and

a single Nvidia Tesla T4 GPU with 16GB of memory. Instead, all

performance testing for all of the compared approaches was car-

ried out on the same machine with an 8-Core Intel Broadwell CPU

clocked at 2.00GHz with 62GB of RAM.

3.6 Threats to Validity

With regards to the problem statement raised in this paper, i.e.,

on-the-fly SH, ANTLR4 undoubtedly represents the package of

technologies and strategies required not only for the definition of

BF models but also their evaluation. Despite the best intention to

consider all viable options, one should not exclude the existence

of, perhaps language-specific, parsing tools that might scale the

performance of BF resolvers.

The impossibility to generate testing oracles from snippets pro-

duced by online user processes, resulted in a first experiment setup

which synthetically generates incomplete/incorrect language deriva-

tions from the set of parsable derivations. Therefore, it is crucial to

note that RQ4 only intends to provide an initial perspective on how

the three approaches might perform on file segments, and at that

the formal measure of closeness between this synthetic process

to that observable in online code snippets is unknown. Moreover,

human annotator processes are likely to employ their statistical

inference about the missing context of some code fragment. Hence,

one may argue that conducting such an assessment with a manually

composed, and therefore inconsistent, dataset would instead vali-

date a model’s ability to meet the level of program-comprehension of

the sample of users that created the dataset. Instead, the synthetic

dataset created here indirectly validates the model’s ability to infer

the statistically most likely missing context.

Pygments provides syntax highlighting for 534 languages. How-

ever, it is a collection of implementations of language-specificRegex

SH, and not a single generic SH resolver. This work compares with

three of such highlighters, i.e., Java, Kotlin, and Python, but

promises to be applicable to other languages, as language-specific

BF can be used to train new language models. The validation of the

proposed approach across all the languages supported by the Regex-

based counterpart would extensively assess the generalizability of

the strategy. Therefore, this aspect is considered a limitation of

the experimental setup, which does not prove the absolute generic

performances of this novel strategy but instead delivers seminal

evidence of its applicability.

Benchmarks for prediction delays might only give a general

perspective of the performances of such tools, but exclude spe-

cific implementation optimizations that developers might design.

It may also include file size limits for online consumption, which

might be platform dependent. Other variables might concern the

efficiency of the integration of SH resolvers with the rest of the

service, caching strategies, or hardware specifications. For example,

the proposed RNN solution might perform differently if run on

more production-focused deep learning libraries [1], or on GPUs.

4 RESULTS

Developing from the experiment setups described in Section 3, this

section individually addresses the performance of the proposed

approach with regards to the four research questions identified. For

each question, its specific validation workflow is described, and the

results are presented and discussed.

To compare the observations, the łKruskal-Wallis Hž test [23]

was applied with the łVargha-Delaney 𝐴12ž test [40], for the ef-

fect size to characterize the magnitude of such differences. For this

reason, the following reports the evaluation metrics in terms of

median values, being these tests based on the median differences.

4.1 RQ1 ś Comparison with BF’s Accuracy

RQ1 aims at evaluating the SH accuracy of the proposed approach

when compared to the theoretical perfect BF resolver, on language

derivation for which an AST is derivable. Such aspect is validated

regarding all three programming languages, as well as to the four

Coverage Tasks. Every candidate RNN model is first individually

trained on the training set of each fold, and its accuracy is recorded

about its predictions on the corresponding test set.

As reported in Table 2, for all the languages and coverage tasks

selected in this experiment, the proposed approach is capable of pro-

ducing near-perfect SH solutions. The bidirectional variants prove

to be the most eclectic model, which, even in the narrowest tested

configuration (RNN(16)), achieve a perfect score more consistently

than any base RNN model, across all languages and tasks. It is as

expected, with bidirectionally extending the context around each

token. Hence, it enables the resolution of ambiguous syntactical

structures of which type is dependent on the next tokens.

Furthermore, the BRNN variant promotes a significant improve-

ment in the stability of this strategy, with the accuracy distribution

more concentrated around the perfect mark and the outliers being

not only fewer but also of generally higher accuracy than otherwise

obtainable with base RNNs. This is clearly visible in Figure 2.

275



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall

Table 2: Median values over 3 folds for the accuracy. Themaximum scores per task are highlighted

Model
Java Kotlin Python

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Regex 0.8662 0.7606 0.7233 0.7230 0.8009 0.6998 0.6787 0.6781 0.9364 0.8189 0.8189 0.8165

RNN(16) 0.9987 0.9716 0.9676 0.9668 1.0000 0.9627 0.9598 0.9605 1.0000 0.9560 0.9559 0.9550

RNN(32) 1.0000 0.9751 0.9710 0.9706 1.0000 0.9648 0.9640 0.9631 1.0000 0.9572 0.9571 0.9570

BRNN(16) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

BRNN(32) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Python

Kotlin

Java

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

BRNN(32)

BRNN(16)

RNN(32)

RNN(16)

Regex

BRNN(32)

BRNN(16)

RNN(32)

RNN(16)

Regex

BRNN(32)

BRNN(16)

RNN(32)

RNN(16)

Regex

Accuracy
Figure 2: Accuracy values comparison for T4.

Therefore, for the average case, the proposed RNN strategy to SH

is most often able to perform as well as the pure BF strategy. Nev-

ertheless, being this a nondeterministic approach, some contained

levels of inconsistency should be expected.

4.2 RQ2 ś Comparison withRegex’s Accuracy

Addressing RQ2 allows for the contextualization of the accuracy

values obtainable by the proposed strategy, with what is achievable

with today’s state of practice, i.e., regexes. Such a research question

is therefore tackled by evaluating the SH accuracy of Pygments on

the same test datasets used to estimate the generalizing accuracy

of the RNN models in RQ1.

As supported by the evidence displayed in Table 2, which reports

the median accuracy values per SH method, the regex-based strat-

egy consistently performs the worst across all tested scenarios. It

is also essential to notice how the Regex approach is significantly

more prone to variability in its level of accuracy, compared to any

of the RNN models tested, as visualized in Figure 2. Pygments

yields its best performance across all languages when its output is

evaluated about coverage task T1.

Another observation concerns Pygments’s accuracy decaying

significantly for all tasks other than T1. Compared to the other tasks,

T1 requires the identification of only lexical features and declarator

identifiers. However, unlike declarations, lexical components are

always deterministically identifiable through lexing, except soft

keywords. T1 is, therefore, the least complex task out of all of those

tested as, per file, only a handful of declaration identifiers are found,

requiring the resolvers to identify mainly lexical features. Hence,

the accuracy of Regex resolver converges considerably for tasks

T2, T3 and T4, as all other grammatical features are reasonably

consistently bounded to incorrect hc values.

Overall, the evidence collected for RQ2 supports the fact that

the proposed approach is capable of quite consistently boosting the

SH accuracy otherwise achievable with the state of practice.

4.3 RQ3 ś Speed Comparison

The investigation into the prediction speed of all the available ap-

proaches aids in contextualizing at what responsiveness costs the

proposed approach to SH can deliver its coverage and accuracy

performances. Thus, each resolver is set to produce SH for each

language’s oracle 30 times, and their prediction delays are recorded.

The experiments are carried out on the same machine, and no GPU

is used for the evaluation of the execution of NN based resolvers.

From the results obtained and summarised in Table 3, several ob-

servations can be made.

The RNN based approaches provide significant speed-ups over

the BF resolvers. In fact, in the case of Java prediction delays are

25 times smaller for RNNs of both 16 and 32 hidden units; and 13

times smaller in the case of the bidirectional variants. Moreover, the

standard deviation of the prediction delays of the proposed solution

is also significantly smaller than the BF counterparts. Both RNN

models reduce this metric by a factor of 38 and the BRNN models

by a factory of 25. Kotlin leads to similar conclusions, although

with the BF solution yielding better performances, but still worst

compared to the proposed solution. In particular, the gains in favor

of the RNN models, which do remain consistent with the delays

recorded in Java, decrease to an average speed-up of 4 for the RNN

models, and 2 for the BRNN models. Standard deviation is also

down by a factor of 3 and 2 for the RNN and BRNN respectively.

276



On-the-Fly Syntax Highlighting using Neural Networks ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 3: Descriptive statistics of execution time (ms)

Model
Java Kotlin Python

Mean SD Min Median Max Mean SD Min Median Max Mean SD Min Median Max

BF 225.684 894.046 0.004 45.903 49618.222 30.950 87.893 0.011 8.080 14119.526 52.798 242.363 0.033 24.022 23628.056

Regex 0.015 0.040 0.004 0.011 22.975 0.010 0.047 0.004 0.009 27.468 0.016 0.030 0.003 0.013 7.048

RNN(16) 9.195 18.704 0.206 3.877 689.178 8.383 31.805 0.370 3.612 12755.019 66.313 288.904 0.182 32.597 27164.357

RNN(32) 9.202 18.581 0.195 3.887 677.833 8.439 30.231 0.384 3.666 12067.893 63.522 276.867 0.176 31.682 26279.598

BRNN(16) 17.506 36.176 0.270 7.241 1269.607 14.997 40.814 0.586 6.537 12120.509 75.235 333.959 0.217 35.742 32334.076

BRNN(32) 17.728 36.565 0.278 7.396 1341.984 15.664 42.090 0.605 6.829 12243.090 76.895 344.068 0.219 36.301 32475.535

Java Kotlin Python

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

0

50

100

150

200

250

300

350

400

0

25

50

75

100

125

150

175

200

0

200

400

600

800

1000

1200

1400

1600

T
im

e 
(m

s)

BF Regex RNN(16) BRNN(16)

Figure 3: Execution time (ms) values trends comparison for T4.

Nevertheless, such a narrative changes when comparing the

performance of the NN approach to the BF resolver for Python.

According to Table 3, the proposed RNN approach is not superior to

the BF approach. In fact, the parsing proves to be significantly more

efficient than it is in the cases of Java and Kotlin. With the tech-

nologies constant for all BF resolvers, this suggests the grammar of

the Python language is the main promoter for the efficiency gains

observed. Nonetheless, the proposed approach proves capable of

nearing such stellar performance of the BF resolver, however with

some contained slowdowns: 1.3 and 1.4 on average for the RNN

and BRNN models respectively. Standard deviation is also mildly

down by 1.2 and 1.4 for the RNN and BRNN models.

As expected, the computational overheads of the proposed NN

approach are more significant compared to the ones that accom-

pany Regex. However, with the RNN strategy focused on delivering

greater SH accuracy and coverage, and a significantly smaller devel-

opment effort for developers, the focus is shifted on the suitability of

this approach to the task. Considering the average delays recorded

during this experiment, these are found to be relatively small. For

the RNN approaches predictions are on average delivered in 9ms,

8ms, and 66ms, for Java, Kotlin and Python respectively; and

the medians 4ms, 4ms and 33ms. Such computational delays would

most comfortably belong with the Seow’s response-time catego-

rization of instantaneous [34]. In this category includes human and

computer interactions that are expected to complete within 100ms

and 200ms, e.g., clicking and typing; whilst longer delays, within

500ms and 1000ms, being categorized as immediate, this last one

including navigation actions [10, 34].

Figure 3 shows a smoothed line plot to represent the execution

times for all the experiments. As it shows, the proposed approach

is capable of delivering SH results well within the average human

deadlines, with these requiring delays to be within 2 s to 5 s to main-

tain flow [10, 34], and tolerating a webpage response of 2 s [26].

4.4 RQ4 ś Incomplete Derivations Highlighting

RQ4 considers SH accuracy of the highlighters with incomplete/in-

correct language derivations. Likewise, for RQ1 and RQ2, all ap-

proaches are set to produce highlighting for all three languages and

four coverage tasks. The dataset used for this RQ4 is the generated

snippet dataset, for which perfect target solutions are known.

As it possible to notice by comparing Table 4, related to RQ4,

with Table 2, related to RQ1, the results show how the RNN-based

approaches are capable of maintaining accuracy performances on

par with those obtainable on language derivations for which an

AST is derivable. In fact, also in this scenario the RNN models com-

pute SH with an accuracy within 94 % to 96 %, and the bidirectional

variants always reaching a perfect median accuracy value. The

state of practice, i.e., Regex, registers a decrease in accuracy, which,

similarly to RQ2, is considerably far from those obtainable with

the proposed NN models. It is especially noticeable for tasks with

larger grammatical coverage, such as T4.

Figure 4 informs best about not only how consistently poorer

the results of the Regex approach are compared to those of the

RNNs and BRNNs, but also how much more variable they can be

expected to be. Instead, the BF resolvers proved to be the least

eclectic strategy. For Java, median performance values are close

to those obtainable with the Regex resolver, however, at the cost

of much greater variability than the latter. BF strategy performs

the worst with Kotlin, yielding 0 median accuracy value and yet

again a significant accuracy variance. Finally, in the case of Python,

the BF approach is capable of outperforming both Regex and the

277



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall

Table 4: Median values over 3 folds for the accuracy for snippets. Themaximum scores per task are highlighted

Model
Java Kotlin Python

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

BF 0.9211 0.7421 0.6586 0.6440 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000

Regex 0.8700 0.6859 0.6346 0.6340 0.8117 0.6577 0.6285 0.6279 0.9338 0.7890 0.7890 0.7860

RNN(16) 1.0000 0.9582 0.9512 0.9506 1.0000 0.9503 0.9469 0.9467 1.0000 0.9605 0.9595 0.9587

RNN(32) 1.0000 0.9634 0.9557 0.9555 1.0000 0.9534 0.9513 0.9512 1.0000 0.9618 0.9614 0.9617

BRNN(16) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

BRNN(32) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Python

Kotlin

Java

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

BRNN(32)
BRNN(16)
RNN(32)
RNN(16)
Regex

BF

BRNN(32)
BRNN(16)
RNN(32)
RNN(16)
Regex

BF

BRNN(32)
BRNN(16)
RNN(32)
RNN(16)
Regex

BF

Accuracy
Figure 4: Accuracy values comparison for incomplete

language derivations.

base RNN approaches, nearing the predictions of the BRNN models.

However, the latter presents a mildly smaller number of outliers.

5 RELATEDWORK

The main goal of this proposed approach is to show that deep

learning can be used to perform syntax highlighting effectively and

efficiently. In the following, the current state-of-the-art approaches

that most relate to the proposed approach are listed.

Deep learning type inference. Similar applications of deep learning

(DL) models have been utilized in the field of Type Inference; an

example of this is DeepTyper [15]. In this case, motivated by the

maintainability and readability benefits of a statically typed code-

base, the model aims at aiding developers in the transition of code

of dynamically typed languages supporting type annotation to their

annotated equivalent. Similar to how the proposed approach to SH

learns to infer the behavior of a parser on token ID sequences,Deep-

Typer aims at statistically inferring the compiler’s type inference

process. Such capability becomes especially useful in languages

such as JavaScript, which cannot deterministically handle duck-

typing even during runtime. The architecture used in DeepTyper

is also based on BRNNs, however including extra infrastructure for

the handling of more complex predictions. In fact, this consists of

bidirectional Gated Recurrent Unit (GRU) [9], with 2 hidden layers

of 650 hidden units each. To proxy between the two hidden layers,

an extra layer is introduced: the Consistency Layer. This pushes

forward an extra input for the second BRNN layer, in the form of

the average token representation (embeddings) of the first BRNN

layer, thereby promoting the model to use long-range values in the

input. Furthermore, the model maps its input vector through an

embedding layer of size 300. Finally, DeepTyper maps the values

of its output layer through a softmax function to obtain for each

input token a categorical probability distribution over the types in

some vocabulary. The oracle is also generated analytically, with

TypeScript files first annotated by the compiler and then stripped

of their type annotations to obtain JavaScript files.

Unlike the approach proposed in this paper, DeepTyper uses

tokens as inputs, complete of identifiers: this also allows it to com-

pute type names. However, this extra information is not needed

in the SH scope, in which structure is directly dependent on the

sequence of token rule or type, i.e., tr. The adaptation of the Deep-

Typer model to the task of SH, although obviously possible, is vain

due to the evidence being reported. Base BRNN models are never

saturated in their ability to reach perfect SH accuracy. It means

the extra infrastructure of a DeepTyper model would likely not

generate better results but would lead to larger and slower models.

Learning lenient parsing and typing via indirect supervision. Type-

Fix is a transformer [41] decoder network developed as part of an

approach to leniently parse and type Java code fragments [2]. It

develops from the architecture and task of DeepTyper, and derives

a deeper model based on a 6 layer decoder network, with each layer

having multi-head attention and feed-forward. By design, such fla-

vors of encoder-decoder models promote the output of each inner

layer to be a function of all combinations of units in the previous

layer. It promotes the learning of generalizable reductions of the

relationships among elements in the input sequence. More levels of

relationships between the inputs may also be learned throughmulti-

headed attention, by adding more attention layers to the model.

278



On-the-Fly Syntax Highlighting using Neural Networks ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Moreover, this mechanism allows the model to be more easily

trained on long sequence, unlike RNN models, which, due to their

recurrent evaluation of an input vector, suffer from vanishing gradi-

ents [7]. Similarly to the proposed strategy to SH, and DeepTyper,

TypeFix is trained over a synthetically derived oracle. In particular,

this consists of bindings of Java token identifiers and the respective

deterministically derived type. Hence, the model is trained to bind a

categorical probability distribution over some fixed type vocabulary.

The reasons for which such architecture is not being evaluated

in this first iteration towards on-the-fly SH, are in line with those

given for DeepTyper.

Generatingrobustparsersusing islandgrammars. Island grammars [24]

are grammars which define both island and water productions. is-

land rules define how to consume specific subsequences of some

input sequence. Instead, water rules define how to consume all of

those tokens that could not be bounded to any island rule. Such

grammar structure might be used for the task of SH. In fact, given a

language, one can define the set of island rules as the collection of

those sub-productions which consume highlightable sequences and

map every other token to a particular production that consumes

any terminal symbol.

Nevertheless, this strategy is outside the goals of this work. Pro-

ducing an island grammar would induce a development workflow

similar to the current state of practice, requiring developers to have

a deep understanding of the grammatical structure and undertake a

tedious process for the definition of productions with high coverage

and accuracy. It is significantly more challenging than providing

a tree walker for relevant constructions of the original grammar,

which by design correctly consumes all the valid iterations for the

same feature. Moreover, the island approach would still leave the

handing of incomplete language derivations in the hands of the

developer. Similarly to the state of practice, island-like solutions

represent the workflow this paper wishes to avoid.

6 CONCLUSIONS AND FUTUREWORK

The proposed approach is capable of consistently computing per-

fect SH schemes for the average input files for all the mainstream

languages considered. Thereby, it comfortably outperforms the SH

accuracy achievable with the here tested state of practice. Further-

more, this solution to SH is capable of producing such outputs in

expected time delays significantly faster and with lower variance

than formal approaches, i.e., brute-force (BF), capable of equal out-

puts. However, it is verified that for cases in which the language’s

grammar results in an efficient parsing of the input, as it is true for

Python, the deep strategy does not represent a superior alternative

to the BF with regards to the prediction delays, with both solutions

yielding time delays suitable for these scenarios.

Future work might investigate further the accuracy with regard

to the distribution of online snippets: an aspect that, due to the

strict design of a BF method, at this stage was not achievable. For

this purpose, the automated APIzation protocol of code fragments

presented by Terragni and Salza [39], might be used for the con-

struction of grammatically correct versions of online snippets, from

which a formal oracle could be derived. Moreover, the native paral-

lelisation of Convolutional Neural Networks (CNNs) [20], already

employed in sequence to sequence translation tasks [14], may be

exploited for the achieving of smaller prediction delays.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from

the Swiss National Science Foundation (SNSF) project łMelise -

Machine Learning Assisted Software Developmentž (SNSF204632).

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
DandelionMané, Rajat Monga, Sherry Moore, DerekMurray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
PeteWarden, MartinWattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org

[2] Toufique Ahmed, Premkumar Devanbu, and Vincent J Hellendoorn. 2021.
Learning Lenient Parsing & Typing Via Indirect Supervision. Empirical Software
Engineering 26, 2 (2021), 1ś31.

[3] Kanav Anand, Ziqi Wang, Marco Loog, and Jan van Gemert. 2020. Black Magic
in Deep Learning: How Human Skill Impacts Network Training. arXiv:2008.05981
[cs.CV] (2020). https://arxiv.org/abs/2008.05981

[4] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. 2018. Unsu-
pervised Neural Machine Translation. In International Conference on Learning
Representations (ICLR).

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations (ICRL).

[6] Ralph Becket and Zoltan Somogyi. 2008. DCGs+ Memoing= Packrat Parsing
but Is It Worth It?. In International Symposium on Practical Aspects of Declarative
Languages (PADL). 182ś196.

[7] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning Long-Term
Dependencies with Gradient Descent Is Difficult. Ieee Transactions on Neural
Networks 5, 2 (1994), 157ś166.

[8] Georg Brandl. 2022. Pygments. https://pygments.org
[9] KyunghyunCho, Bart vanMerrienboer, CaglarGulcehre,DzmitryBahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Represen-
tations Using RNN EncoderśDecoder for Statistical Machine Translation. In Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). 1724ś1734.

[10] Jim Dabrowski and Ethan V Munson. 2011. 40 Years of Searching for the Best
ComputerSystemResponseTime. InteractingwithComputers 23, 5 (2011), 555ś564.

[11] Sérgio Queiroz de Medeiros, Gilney de Azevedo Alvez Junior, and Fabio
Mascarenhas. 2020. Automatic Syntax Error Reporting and Recovery in Parsing
Expression Grammars. Science of Computer Programming 187 (2020).

[12] Sérgio Queiroz de Medeiros and Fabio Mascarenhas. 2018. Towards Automatic
Error Recovery in Parsing Expression Grammars. In Brazilian Symposium on
Programming Languages (SBLP). 3ś10.

[13] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation. InACMSIGPLAN Symposium on Principles of Programming Languages
(POPL). 111ś122.

[14] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional Sequence to Sequence Learning. In International Conference
on Machine Learning (ICML). 1243ś1252.

[15] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.
Deep Learning Type Inference. In ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
152ś162.

[16] John A Hoxmeier and Chris DiCesare. 2000. System Response Time and User
Satisfaction: An Experimental Study of Browser-Based Applications. In America’s
Conference on Information Systems (AMCIS).

[17] Luke AD Hutchison. 2020. Pika Parsing: Reformulating Packrat Parsing as a
Dynamic Programming Algorithm Solves the Left Recursion and Error Recovery
Problems. arXiv:2005.06444 [cs.PL] (2020). https://arxiv.org/abs/2005.06444

[18] Jiwoon Jeon, W Bruce Croft, Joon Ho Lee, and Soyeon Park. 2006. A Framework
to Predict the Quality of Answers with Non-Textual Features. In International
ACM Conference on Research on Research and Development in Information Retrieval
(SIGIR). 228ś235.

[19] Yu Kang, Yangfan Zhou, Min Gao, Yixia Sun, andMichael R Lyu. 2016. Experience
Report: Detecting Poor-Responsive Ui in Android Applications. In International
Symposium on Software Reliability Engineering (ISSRE). 490ś501.

279

https://www.tensorflow.org
https://arxiv.org/abs/2008.05981
https://pygments.org
https://arxiv.org/abs/2005.06444


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall

[20] YannLeCunandYoshuaBengio. 1995. ConvolutionalNetworks for Images, Speech,
andTimeSeries. TheHandbookofBrainTheoryandNeuralNetworks 3361, 10 (1995).

[21] Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech
Zaremba. 2015. Addressing the RareWord Problem inNeuralMachine Translation.
InAnnual Meeting of the Association for Computational Linguistics (ACL). 11ś19.

[22] Sérgio Medeiros and Fabio Mascarenhas. 2018. Syntax Error Recovery in Parsing
Expression Grammars. In ACM/SIGAPP Symposium on Applied Computing (SAC).
1195ś1202.

[23] Douglas CMontgomery. 2017. Design and Analysis of Experiments. Wiley.
[24] Leon Moonen. 2001. Generating Robust Parsers Using Island Grammars. In

Working Conference on Reverse Engineering (WCRE). 13ś22.
[25] Leon Moonen. 2002. Lightweight Impact Analysis Using Island Grammars. In

International Workshop on Program Comprehension. 219ś228.
[26] FionaFui-HoonNah. 2004. AStudyonTolerableWaitingTime:HowLongAreWeb

Users Willing toWait? Behaviour & Information Technology 23, 3 (2004), 153ś163.
[27] Marco Edoardo Palma, Pasquale Salza, and Harald C. Gall. 2022. On-

the-Fly Syntax Highlighting Using Neural Networks ś Replication Package.
https://doi.org/10.5281/zenodo.6958312

[28] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL (*) Parsing:
The Power of Dynamic Analysis. ACM SIGPLAN Notices 49, 10 (2014), 579ś598.

[29] Terence Parrm. 2022. ANTLR. https://www.antlr.org
[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, ZacharyDeVito,Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems (NIPS). 8024ś8035.

[31] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David
Fullerton. 2014. Improving LowQuality Stack Overflow Post Detection. In IEEE
International Conference on SoftwareMaintenance and Evolution (ICSME). 541ś544.

[32] Advait Sarkar. 2015. The Impact of Syntax Colouring on ProgramComprehension.
InAnnual Meeting of the Psychology of Programming Interest Group (PPIG).

[33] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional Recurrent Neural
Networks. Ieee Transactions on Signal Processing 45, 11 (1997), 2673ś2681.

[34] Steven C Seow. 2008. Designing and Engineering Time: The Psychology of Time
Perception in Software. Addison-Wesley Professional.

[35] Stack Exchange, Inc. 2022. StackExchange Data Explorer. https:
//data.stackexchange.com

[36] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learningwith Neural Networks. In International Conference on Neural Information
Processing Systems (NIPS). 3104ś3112.

[37] MohammadReza Tavakoli, Abbas Heydarnoori, and Mohammad Ghafari. 2016.
Improving the Quality of Code Snippets in Stack Overflow. In ACM/SIGAPP
Symposium on Applied Computing (SAC). 1492ś1497.

[38] ValerioTerragni, YepangLiu, and Shing-ChiCheung. 2016. CSNIPPEX:Automated
Synthesis of Compilable Code Snippets from Q&A Sites. In ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 118ś129.

[39] Valerio Terragni and Pasquale Salza. 2021. APIzation: Generating Reusable Apis
from StackOverflow Code Snippets. In IEEE/ACM International Conference on
Automated Software Engineering (ASE). 542ś554.

[40] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of
the "CL" Common Language Effect Size Statistics of McGraw andWong. Journal
of Educational and Behavioral Statistics 25, 2 (2000), 101ś132.

[41] AshishVaswani,NoamShazeer,Niki Parmar, JakobUszkoreit, Llion Jones,AidanN
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In
Conference onNeural InformationProcessingSystems (NIPS), I.Guyon,U.V. Luxburg,
S.Bengio,H.Wallach,R. Fergus, S.Vishwanathan, andR.Garnett (Eds.). 5998ś6008.

[42] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil,WeiWang, CliffYoung, Jason Smith, JasonRiesa,AlexRudnick,Oriol
Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Neural
Machine Translation System: Bridging the Gap Between Human and Machine
Translation. arXiv:1609.08144 [cs.CL] (2016). https://arxiv.org/abs/1609.08144

280

https://doi.org/10.5281/zenodo.6958312
https://www.antlr.org
https://data.stackexchange.com
https://data.stackexchange.com
https://arxiv.org/abs/1609.08144

	Abstract
	1 Introduction
	2 Approach
	2.1 Oracles for Syntax Highlighting
	2.2 RNNs for Syntax Highlighting

	3 Experiments
	3.1 Coverage Tasks Definition
	3.2 Data Collection and Preprocessing
	3.3 Compared Approaches
	3.4 Evaluation Metrics
	3.5 Execution Setup
	3.6 Threats to Validity

	4 Results
	4.1 1 – Comparison with 's Accuracy
	4.2 2 – Comparison with 's Accuracy
	4.3 3 – Speed Comparison
	4.4 4 – Incomplete Derivations Highlighting

	5 Related Work
	6 Conclusions and Future Work
	References

