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Abstract—The Transformer architecture and transfer learning have marked a quantum leap in natural language processing, improving

the state of the art across a range of text-based tasks. This paper examines how these advancements can be applied to and improve code
search. To this end, we pre-train a BERT-based model on combinations of natural language and source code data and fine-tune it on pairs of
StackOverflow question titles and code answers. Our results show that the pre-trained models consistently outperform the models that were not
pre-trained. In cases where the model was pre-trained on natural language “and” source code data, it also outperforms an information retrieval
baseline based on Lucene. Also, we demonstrated that the combined use of an information retrieval-based approach followed by a Transformer
leads to the best results overall, especially when searching into a large search pool. Transfer learning is particularly effective when much
pre-training data is available and fine-tuning data is limited. We demonstrate that natural language processing models based on the Transformer
architecture can be directly applied to source code analysis tasks, such as code search. With the development of Transformer models
designed more specifically for dealing with source code data, we believe the results of source code analysis tasks can be further improved.

Index Terms—Code search, transfer learning, source code modeling, multimodal embeddings, StackOverflow, deep learning.

1 INTRODUCTION

Code search, or code retrieval, is the task of retrieving source
code from a large code corpus given a natural language user
query and can be an effective tool for software developers. It
helps them to find examples of how to implement a particular
feature quickly, discover software libraries that provide specific
functionality, navigate through their codebase, or even find
pieces of source code that need to be changed to accommodate
user concerns such as feature requests or bug fixes [1], [2]. For
example, a developer might search for “how to convert string to
int in java” and the retrieval system returns a code snippet such
as int i = Integer.parselnt(intString);.

The goal of code search is to return source code snippets that
are most relevant to the user query. In other words, the semantics
of source code should correspond to the semantics of the natural
language query. Traditional retrieval systems are based on
token matching, comparing the tokens in the search query
with the tokens in the search corpus” documents and returning
those documents with the biggest overlap between query and
document tokens, which are often weighted by their frequency
and inverse document frequency, or tf-idf [3]. This approach
has proven helpful for matching natural language queries with

natural language documents, such as books or web pages.

However, when it is used to match natural language queries with
source code documents is less effective. One reason for this is
that the tokens in the query do not necessarily match those in the
source code. For example, the query “read json data” would not
find a method called deserializeObjectFromString even though
it might be relevant to the query. This discrepancy between the
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query language and the language in the documents of the search
corpus is referred to as “lexical gap”, or “heterogeneity gap”.
Recent work has used neural networks [4], [5], [6], i.e., deep
learning, to overcome the lexical gap, many of which have their
origins in the field of Natural Language Processing (NLP). Using
models designed initially for NLP tasks and applying them
to problems dealing with source code can indeed be a viable
approach since source code shows similar statistical properties
as natural language [7]. The model needs to understand the
relationships between the tokens in the sequence for both natural
and programming languages. For natural language, that can
mean finding the noun to which a pronoun refers or the subject to
which a verb belongs. In contrast, for source code, it might mean
identifying opening and closing parentheses or matching vari-
able access statements with inconsistent declaration statements.
The Transformer architecture has proven highly effective
in modeling such dependencies between tokens, especially in
longer sequences, where Recurrent Neural Networks (RNNs)
show some limitations [8], [9], [10]. One aspect that makes them
particularly powerful in NLP tasks is the use of transfer learning.
The idea behind it is to leverage a large corpus of data to pre-train
amodel, and then fine-tune it on a smaller dataset. Commonly, the
pre-training dataset is extensive, easy to acquire, but unlabeled,
and not closely related to the problem we want to solve. On the
other hand, the fine-tuning dataset is generally characterized
by being small, difficult to acquire, but often labeled and closely
related to our problem task. The intuition behind transfer
learning is that, during pre-training, the model learns valuable
abstractions of the data, which are effective for solving the
problem, or “downstream” task, during the fine-tuning. In NLP,
pre-training usually consists of learning a language model on
large corpora of natural language text. Then, this pre-trained
model can be employed in any particular downstream task, e.g.,
machine translation, sentiment analysis, part-of-speech tagging,
and summarization. An example of Transformer is Bidirectional
Encoder Representations from Transformers (BERT) [9], widely


mailto:salza@ifi.uzh.ch
mailto:christoph@schwizer.dev
mailto:gu@ifi.uzh.ch
mailto:gall@ifi.uzh.ch

used for many NLP tasks. It has robustly optimized in many
versions, e.g., ROBERTA [11], and specialized [12]. Moreover,
BERT effectively enables transfer learning.

We argue that the same method can be applied to code search:
train a language model on a large, unlabeled source code corpus,
then fine-tune it on a smaller but labeled code search dataset.
The goal of this work is to leverage the predictive capabilities
of BERT, as a state-of-the-art Transformer-based NLP model and
make use of transfer learning to improve the performance of
code search. We propose an approach based on pre-training two
BERT encoders, one for queries and one for code, which learn
how to independently represent those two forms of data. Then,
we assemble the encoders into a single Multimodal Embedding
Model (MEM), fine-tuned on the code search downstream task.

Transfer learning can be beneficial in code search as attaining
a large enough code search dataset for training is difficult. Not
only is a small dataset problematic for the training but also
for the evaluation of a model since it limits the number of
examples on which the model can be tested. In our approach,
we evaluate the performance of our models by leveraging both
GITHUB and STACKOVERFLOW datasets that we specifically
mined for this purpose. We use the GITHUB dataset to pre-train
the BERT models, for a total of ~6,450,000, ~27 x larger
than the STACKOVERFLOW data. We propose the use of
STACKOVERFLOW questions and accepted code answers as a
proxy for code search interactions, whereby the question’s title
acts as an approximation of a search query and the code snippet
of the accepted answer as the document to be retrieved from
the search corpus. We mine such a dataset for three popular
programming languages, i.e., JAVASCRIPT, JAVA, and PYTHON,
obtaining a total of ~240,000 pairs of query and code.

To summarize, in this paper, we first define an approach for
code search, using Transformers and transfer learning in the form
of a MEM. Therefore, we conduct a large empirical study and
compare the produce model with the state-of-the-art approach
for code search, i.e., DEEPCS [5] and an information retrieval-
based approach, i.e., LUCENE. Finally, we also provide a com-
bined approach based on the pre-filtering of search candidates
by LUCENE and then refined by MEM, and test its performance.

Our code search dataset from STACKOVERFLOW, reflecting
a typical transfer learning scenario, the pre-trained source code
models, as well as the source code for data mining, pre-training,
and fine-tuning, are available in our replication package [13] and
published at https:/ /tl-codesearch.netlify.app.

Paper organization. The rest of the paper is structured as follows.
In Section 2, we give an overview of the main concepts involved
in this work. Section 3 presents our approach based on BERT
and transfer learning. In Section 4, we describe the experimental
evaluation of our approach. The results of the experiments are
presented in Section 5, whereas Section 6 surveys the related
work. Finally, this paper concludes in Section 7 with a summary
of the findings and contributions of this work, as well as an
outlook on future research in this area.

2 BACKGROUND

This section introduces the main involved concepts, which help
understand the proposed approach.
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Fig. 1: The Multimodal Embedding Model (MEM).

2.1 Multimodal Embedding Model (MEM)

An MEM builds vector representations (“embeddings”) for each
mode, e.g., natural language and source code, such that similar
concepts are located in the same region of a shared vector
space, also called “semantic space”. Recent work has relied
on multimodal embeddings to overcome the lexical gap [14],
[15]. Multimodal embeddings are especially useful for code
search as they allow for retrieval using a simple distance-based
similarity metric, e.g., “cosine similarity”. At search time, the
natural language query is encoded into its vector representation
and compared to all source code vectors in the search corpus.
Finally, the source code documents are returned as a list sorted
by their distance to the query vector in increasing order.

To transform a natural language query into its vector repre-
sentation, the MEM runs the query through an encoder £,. In
contrast, another encoder E .. transforms a source code document
into its vector representation. More formally, £, : Q — R and
E..C—R%are embedding functions, where Q is the set of natu-
ral language queries, C is the set of source code documents, and
R? is the space of real-valued vectors of size d. Fig. 1 depicts the
architecture of a typical MEM for code search. The encoder can
be any model that converts the input data into its vector repre-
sentation. In the past, RNNs were often used for the source code
encoder [14], [16], [17], [18], [19], [5] as well as Convolutional
Neural Networks (CNNs) [6]. In this work, we use BERT [9] as
the encoder architecture for both source code and queries.

2.2 Bidirectional Encoder from

Transformers (BERT)

When the Transformer architecture was introduced, it replaced
RNNS as the state of the art in Neural Machine Translation
(NMT) [8]. RNNSs process each token in a sequence in a “sequen-
tial” way. This leads to a loss of information on far-away tokens,
i.e., by the time the RNN arrives at the last token, the signal from
the first token becomes very small. The “attention” mechanisms
mitigate this problem, allowing the RNN to focus on arbitrary
preceding tokens in the sequence. Despite attention, the nature
in which RNNSs process data is still sequential. The Transformers
change this by removing recurrence and handling the entire in-
put sequence in parallel. It achieves this by relying solely on atten-
tion, whereby a weight for each token pair in the input sequence
is calculated. This component is called an “attention head” and
lets the model represent relationships between tokens in the se-
quence. In fact, it has been shown that attention heads learn syn-
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tactic features of a (natural) language, such as prepositions and
their corresponding object or nouns and their determiner [20].
The parallel nature of Transformers facilitates faster training.
In turn, it enables training on much larger datasets, a key aspect
that BERT [9] exploits, which was trained on an English corpus
of 3.3 billion words. The training tasks were Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). In MLM,
some tokens in the sequence are masked by a special [MASK]
symbol, and the model has to predict the token that is masked
out. In NSP, the model is given two random sentences from the
corpus and has to decide if they appear in a sequence of one
another. These tasks guide BERT to learn a model of English.
BERT uses the same architecture as the Transformer with
one distinction: while the Transformer employs an encoder-
decoder architecture, BERT only uses encoders. BERT does
not generate an output sequence and is designed only to
analyze the input sequence. What sets BERT apart from similar
Transformer-based models is its bidirectionality. As opposed
to Radford et al.’s GPT model [10] that processes the input
sequence only in one direction, e.g., from left to right, BERT
handles the input sequence in both directions (also from right to
left) simultaneously. It enhances the capabilities of the attention
heads as they can focus on preceding and subsequent tokens.
Consequently, the token embeddings that BERT creates are
dependent on the surrounding tokens and therefore called
“contextualized embeddings.” They are more capable than
context-free embeddings, e.g., those generated by word2vec [21]
or GLoVe [22], as they can distinguish between words that spell
the same but have a different meaning, e.g., “minute” in “she
pays attention to every minute detail” vs. “he was one minute late”.

2.3 Transfer Learning

A language model can be practical in itself, e.g., it can be used to
give typing suggestions [23]. However, in the case of BERT, the
language modeling tasks were only used as parameter initial-
ization for different training tasks, such as question answering
and language inference. Transfer learning is a paradigm of
“transferring” the knowledge learned from base data, usually
a large dataset, to the new data for a new given domain
or different tasks [24], [25], [26]. The standard methodology
consists of “pre-training” a model on a large corpus of unlabeled
data and then “fine-tuning” it on a smaller supervised dataset.
During the pre-training stage, the model is usually trained in
a “self-supervised” learning fashion, for which the unlabeled
data is sufficient for the objective. Thus, the pre-training data
is usually extensive and readily available. Instead, during
the fine-tuning stage, the model is trained in a “supervised”
learning way for which a ground truth is required. The data
used for the downstream task is supervised, and its quality
matters the most. Therefore, the data amount is usually limited
since the cost to collect it is more expensive. Other than classical
transfer learning, there are other proposed strategies to improve
data adaptability to target domains or tasks, which mainly work
between the usual pre-training and fine-tuning phases.
Continuous Pretraining (CP) is defined as tailoring a model
to another data domain or designated task through a second
phase of pre-training [27], and it can lead to performance gain.
Moreover, multiphase adaptive pre-training, e.g., domain-
adaptive training followed by the task-adaptive one, promises
an even larger gain. Instead, Intermediate Finetuning (IF) uses
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a pre-trained model and introduces intermediate tasks during
an additional training stage, in the form of warm-up before
training for the target task [28]. Intermediate tasks can be of
different levels of difficulty. The simple intermediate tasks are
close to learning the low-level skills, such as preserving the raw
content and detecting the shallow attributes, e.g., verb tenses
or sentences length in the case of NLP. In contrast, complex
intermediate tasks are generally rather beneficial to promote
the model, e.g., natural language inference [29], and question
answering [30]. Thus, they expect the model to have strong
capabilities such as perceiving interrelations.

In this work, we use a “classical” transfer learning strategy
to study its feasibility when applied to code search. However,
other strategies remain an important future work.

3 APPROACH

The approach proposed in this paper consists of two pre-trained
BERT-based encoders, one for queries and one for code, ulti-
mately assembled to an MEM model fine-tuned on STACKOVER-
FLOW Questions and Answers (Q&As) pairs data. Fig. 2 depicts
the workflow describing the whole approach composition. In this
section, we describe such a proposed approach, giving details
on the query and code encoders pre-training, STACKOVERFLOW
Q&As pairs data mining, and final MEM fine-tuning.

3.1

The first two pipelines in Fig. 2 represent the creation of the
encoders used in our approach, namely the query F, and code
E. encoders, using the so-called “pre-training” method. During
the pre-training, the models learn to represent their input into
vectors, queries, and code for E, and E,, respectively. The two
encoders will be lately assembled and re-trained, i.e., fine-tuning,
for the task of code search.

In the case of the query encoder, i.e., E;, we use the Devlin
et al.’s [9] pre-trained English model (uncased). The model is
publicly available [31] and was trained by using BOOKCOR-
PUS [32], a dataset of 11,038 and WIKIPEDIA [33] (documents
in English, excluding lists, tables, and headers). Since the query
encoder is already pre-trained, and we did not further modify it,
we focus on the description of the code encoder E pre-training.

Data collection. We chose the CODESEARCHNET [34] dataset,
which was mined from GITHUB repositories and consists of
function definitions across six different programming languages
(JAVASCRIPT, JAVA, PYTHON, PHP, GO, and RUBY). We decided
on the CODESEARCHNET dataset because it readily provides
a large set of source code samples in a machine-readable format.
To reduce natural language occurrences in the data, all docu-
mentation and comments were removed using a parser, namely
TREE-SITTER [35]. Otherwise, the data was not further processed.

Table 1 lists the size of our pre-training dataset. In addition
to the dataset sizes of the individual languages, the table lists the
combined size of all datasets (ALL), as well as the combined size
of the three largest datasets (JAVASCRIPT, JAVA, and PYTHON)
(Tor). We pre-trained the models on the JAVASCRIPT, JAVA,
and PYTHON datasets, the TOP dataset, and the ALL dataset.
To keep the number of experiments attainable, we forwent
pre-training on the smaller PHP, GO, and RUBY datasets. Our
largest dataset (ALL) contains around 350 million tokens. In
comparison, BERT [9] was pre-trained on a corpus of 3.3 billion
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Fig. 2: The workflow of the approach composition, from data mining to final model MEM building.

TABLE 1: Size of the pre-training datasets

Language Number of Functions  Number of Tokens
JAVASCRIPT 1,857,835 128,430,003
JAvA 1,569,889 75,654,447
PYTHON 1,156,085 50,551,794
PHP 977,821 53,352,522
Go 726,768 37,075,579
RuBy 164,048 5,495,442
Tor 4,583,809 254,636,244
ALL 6,452,446 350,559,787

words (0.8 billion words from the BOOKCORPUS [32] and 2.5
billion words from English WIKIPEDIA [33]).

Configuration. The pre-training procedure on source code
is similar to the one by Kanade et al. [36] and identical to
the pre-training of Devlin et al.’s BERT,,. model on natural
language [9], with only a slight difference in the pre-training
tasks. Instead of the Next Sentence Prediction (NSP) task for
pre-training on natural language, for source code, we apply
Next Line Prediction (NLPred). In this binary classification
task, the model has to decide for any two given lines of source
code A and B, whether B appears directly after A. To train the
model on this task, it is fed with samples from our pre-training
dataset, in which 50 % of the line B follows line A. In the other
50 % of the cases, B is a randomly chosen line from the corpus
and does not immediately follow line A. It is worth noting that
no extensive normalization practices were applied to the code
before processing it. In particular, since NLPred is based on the
concept of new lines, source code might present a splitting not
correspondent to a logical splitting, i.e., single statements that are
split over multiple lines. A formatter might potentially be able
to normalize the code beforehand. However, we decided to keep
the code as it is, except for removing empty lines. First, the use of
formatters might require the code to be fully parsable, which is
not entirely guaranteed. Instead, if based on regular expressions,
they might also introduce errors. Second, our downstream task
is optimizing code search using STACKOVERFLOW snippets data.
In the majority of the cases, code snippets are not valid code [37],
[38], therefore their normalization would not be guaranteed by
the use of formatters. Therefore, keeping the code intact also
makes the final model learn to deal with actual splitting styles.
We call the MLM task for source code as Masked Source Code
Modeling (MCM) to remark that the model is pre-trained on
source code data instead of natural language. Other than that, the
MLM and MCM tasks are identical, i.e., the model has to predict
masked out tokens in the input sequence. Like Devlin et al., we
selected 15 % of the tokens in the input sequence for masking.
In contrast, we only used a maximum sequence length of 256

tokens, whereas Devlin et al. used 512. The reason for this is that
longer sequences require exponentially more memory during
training and would thus not have fit in our GPU memory (see
Section 4.6) without a drastic reduction in batch size. Moreover,
as we will see in Table 4, the average sequence length in our fine-
tuning dataset is less than 256, so most of the samples can be en-
coded by our model in their entirety. It is worth noting that longer
sequences are instead truncated. With a sequence length of 256,
the maximum batch size fitting in our GPU memory was 62.

Like Devlin et al., we tokenized the source code sequence
using WORDPIECE tokenization [39] with a vocabulary size
of 30,522 tokens. WORDPIECE [40] is one of the most used
subword-based tokenization algorithms, which increased
its popularity thanks to BERT. The algorithm initializes the
vocabulary with all the characters in the language, then
iteratively combines pieces by maximizing the likelihood of
the training data once added to the vocabulary. Moreover,
similar to Husain et al. [34], we kept the case information. We
second their choice to treat source code case-sensitively as case
information carries a valuable signal, such as distinguishing
between constants and variables or between class and method
declarations. In order to adapt BERT to the source code context,
we ran WORDPIECE on top of the training data.

Devlin et al. pre-trained their model for 1 million steps, which
equals about 40 epochs on their dataset. Since our pre-training
datasets are much smaller, and we used a different batch size and
different sequence lengths, we adjusted the number of training
steps accordingly to train for about 40 epochs as well. For exam-
ple, our JAVASCRIPT dataset consists of 128,430,003 tokens. With
a sequence length of 256 tokens and a batch size of 62 sequences
there are 15,872 tokens in a batch. Thus, we reach 40 epochs after
pre-training for 323,665 steps (323,665 x 15,872/128,430,003).
Because of the smaller number of training steps, we also reduced
the number of warm-up steps. Table 2 lists the hyperparameters
we used for pre-training. We achieved high accuracy values
for both tasks, i.e., above 86 % on MCM and 95 % on NLPred,
which suggest that pre-training was successful, and the models
learned useful abstractions of source code.

3.2 Query and Code Pairs Mining

While, with the CODESEARCHNET dataset [34], we had a large
enough dataset for pre-training, we needed a different dataset for
fine-tuning. We could have used the same dataset for both pre-
training and fine-tuning, but not only would that have reduced
the amount of data available for each phase, but also it would
not reflect a typical transfer learning scenario in which the pre-
training dataset differs from the fine-tuning dataset. We believe
that method-docstring data, of which the CODESEARCHNET



TABLE 2: Pre-training hyperparameters vs. BER Ty, [9]

Parameter BERT}a6e BERT custom
Optimizer Adam Adam
Learning rate 0.0001 0.0001
B1 0.9 0.9

B2 0.999 0.999
L2 weight decay 0.01 0.01
Learning rate decay linear linear
Dropout probability 0.1 0.1
Activation function gelu gelu
Masking rate 0.15 0.15
Hidden size 768 768
Intermediate size 3,072 3,072
Attention heads 12 12
Hidden layers 12 12
Vocabulary size 30,522 30,522
Maximum sequence length 512 256
Batch size 256 62
Learning rate warmup steps 10,000 1,000

dataset consists, is not well suited for simulating code search
because docstrings are very different from code search queries.
Not only are they usually much longer than search queries, but
they are also commonly formulated only after the code has been
written. The latter is fundamentally different from a search query
formulation, where, typically, the query is formulated without
prior knowledge of what a relevant search result appears.
Therefore, we decided to mine our dataset of question-
answer pairs from STACKOVERFLOW. We use the question’s title
as the natural language query and the answer’s code snippets as
the source code document to be retrieved from the search corpus.
We believe that STACKOVERFLOW questions are a good proxy
for search queries, primarily since the platform is mostly used for
finding code solutions. Additionally, using STACKOVERFLOW
data allows us to build a large enough dataset to fine-tune and
evaluate our models, which would have been very difficult to
achieve with human annotations only. We deliberately use only
the question’s title and ignore the question’s more detailed de-
scription. We can thus ensure that the pre-training data is differ-
ent from the fine-tuning data (following a typical transfer learn-
ing scenario) and that the natural language examples, i.e., ques-
tion titles, resemble search queries sent to a code search engine.

Data extraction. We extracted the data from STACKOVERFLOW
by using GOOGLE BIGQUERY [41], which contains an updated
version of the STACKOVERFLOW data dump, with the
convenient availability of SQL functionalities. The detailed
SQL queries are available in our replication package [13]. To
gather examples that are specific to a programming language,
we filtered questions by “javascript”, “java"”, and “python” tags.
To gather more data, we included partial matches as well, which
resulted in questions with tags such as “javascript-framework”,
“javabeans”, or “python-3.6" to be part of our corpus.

Data quality improvement. We selected only question-answer pairs
whose answer was an accepted answer. Since only the question
poster can mark an answer as “accepted,” we can assume that
an accepted answer reflects the solution for which the question
poster was looking. Practically, the question poster finds that
answer relevant to their question, which is the behavior we
expect of a search engine: returning relevant results to the
user’s query. We could have selected the highest upvoted
answer to build question-answer pairs. However, since every
STACKOVERFLOW user can upvote an answer, we do not know
anything about the relevance of that answer regarding the
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TABLE 3: Number of StackOverflow questions after each filtering
step. The numbers in the last row represent our final dataset sizes

Step JAVASCRIPT JAvAa PYTHON
Questions 2,045,114 1,841,296 1,884,571
Questions with accepted answer 1,105,690 934,062 984,989
Accepted answer contains a code snippet 861,273 533,217 655,430
3+ upvotes and 3+ lines of code 85,049 71,194 87,231

TABLE 4: Dataset quality statistics on average after filtering

JAVASCRIPT JAVA PYTHON

Statistic

Before  After Before After Before  After
Question upvotes 294 21.16 3.18 16.64 3.51 18.37
Question length (tokens) 8.74 8.48 8.62 8.49 9.08 8.66
Answer upvotes 475 28.96 5.14 22.61 5.34 2413
Answer length (tokens) 17561  207.39 20350 26299 16515 20590
Answer length (lines) 29.73 3443 29.64 3773 25.89 32.63

poster’s intent. We believe that accepted answers are better than
the highest upvoted answers for a code search application to
build question-answer pairs.

Like Husain et al. [34], we filtered out code answers that have
fewer than three lines of code as these are pretty noisy. Many of
them contain only library import statements, or they have code
that is not written in the target programming language, such as
SQL queries, regular expressions, or command-line instructions.
Moreover, to further increase the quality of our sample, we
removed any question-answer pairs in which either the question
or the answer received fewer than three upvotes. It allowed
leveraging the crowd information that STACKOVERFLOW offers
since other users manually judged the relevance of a certain
answer to the poster’s intent.

Overall, our data mining process included the following
steps: (1) filter STACKOVERFLOW questions by “javascript”,
“java", and “python” tags; (2) remove questions that do not
have an accepted answer; (3) remove questions whose accepted
answer does not contain a code snippet (using the «<pre><code>
tags); (4) concatenate several code snippets of the same answer
into one; (5) discard text outside <pre><code> tags; (6) remove
question-answer pairs where either the question or the answer
has fewer than three upvotes or where the answer contains
fewer than three lines of code. Filtering all STACKOVERFLOW
questions by the “javascript”, “java”, and “python” tags resulted
in about 2 million JAVASCRIPT-, 1.8 million JAVA-, and 1.8
million PYTHON-related questions, of which roughly half had
an accepted answer. After having applied all the other steps,
we were left with 85,049 JAVASCRIPT, 71,194 JAVA, and 87,231
PYTHON question-answer pairs. Table 3 lists the number of
samples remaining after each filtering step.

When analyzing the effects of the last filtering step (see
Table 4), we realize that, even though we only removed questions
and answers with fewer than three upvotes, the average number
of upvotes increased for each programming language by at least
a factor of five for the questions, and at least a factor of four
for the accepted answers. Furthermore, while the average ques-
tion length became slightly smaller, the average answer length
became noticeably larger, both in the number of tokens and lines.

Snippets cleaning. We concatenated all code snippets for answers
containing more than one code snippet into one (separated by a
newline character). For instance, an answer author might have al-
ternated their response with code snippets and explanatory text.
Then, we removed all text not contained in the code snippets.



Sometimes, the snippet answer contains code comments that
further explain it. It should be noted that comments were explic-
itly removed from the pre-training data using a parser. Since the
code snippets in STACKOVERFLOW answers are not necessarily
syntactically correct, we cannot use a parser to remove comments
from the answer snippets. Unfortunately, it is known that the
code snippets are, in general, hardly statically parsable since
diverging from a well-formed shape [37], [42]. We could exclude
non-parsable answers from the dataset, but not only would that
reduce the size of our dataset, but also it is not necessary for our
model to receive syntactically correct code since it is purely token-
based. It is one advantage over models that make use of syntactic
structure in the code, such as Abstract Syntax Trees (ASTs).
Nevertheless, the fact that our pre-trained model has not seen
comments will likely affect its performance during fine-tuning.

3.3 Fine-Tuning

The fine-tuning procedure for code search closely follows the
design by Husain et al. [34]. We use the same MEM architecture
with two encoder models, one for the natural language queries
and one for the source code snippets (see Section 2.1), and the
same training objective, namely reducing the distance, i.e., cosine
distance, between query and code vector in the vector space.

Configuration. For the fine-tuning of our Multimodal Embedding
Model, we used the hyperparameters listed in Table 5. Since our
fine-tuning procedure is very similar to the one by Husain et al.,
we kept their hyperparameters whenever possible. We increased
the maximum sequence length of the code encoder to 256
because the average code snippet in our fine-tuning dataset has
around 180 tokens (see Table 4) and because we pre-trained our
code encoder with the same maximum sequence length of 256.
We kept the maximum sequence length for the query encoder
at 30 tokens as our average query contains only around 9
tokens. Thus, we do not expect better performance with a larger
sequence length. To support a high number of experiments
combinations and repetitions, we conducted some preliminary
runs and observed a quicker convergence with Layer-wise
Adaptive Moments Based (LAMB) [43] than using Adam [44].
We then used LAMB and limited training to 5 epochs. In
contrast, Husain et al. trained with Adam for a maximum of 500
epochs but applied early stopping, i.e., their training stopped if
the Mean Reciprocal Rank (MRR) did not improve for 5 epochs
(“patience” hyperparameter). 32 was the largest batch size fitting
the memory of our Nvidia Tesla V100 (32 GB, see Section 4.6).
The BERT-specific hyperparameter values were mostly
dictated by our pre-trained models. For example, the English
model provided by Devlin et al. was pre-trained on a vocabulary
of 30,522 tokens. To keep the hyperparameters between the code
and query encoder as similar as possible, we also pre-trained our
source code model on a vocabulary size of 30,522 tokens. The
same holds for the hidden size and the intermediate size. The
only hyperparameters we changed from our pre-trained models
were the number of attention heads and the number of hidden
layers (both had a value of 12 during pre-training). We decided
to use Husain et al.’s values (8 and 3, respectively) because we
observed faster convergence of the models during training with
those values, presumably due to the reduced model complexity.
One difference between Husain et al. and our approach is
the tokenization and vocabulary building process. Because we
used pre-trained models in our experiments, we had to use the

6
TABLE 5: Fine-tuning hyperparameters vs. Husain et al. [34]

Parameter Husain etal.  Our Approach

Multimodal Embedding Model hyperparameters

Learning rate 0.0005 0.0005
Learning rate decay 0.98 0.98
Momentum 0.85 0.85
Dropout probability 0.1 0.1
Maximum sequence length (query) 30 30
Maximum sequence length (code) 200 256
Optimizer Adam LAMB
Maximum training epochs 500 5
Batch size 450 32
BERT-specific hyperparameters (both code and query)

Activation function gelu gelu
Attention heads 8 8
Hidden layers 3 3
Hidden size 128 768
Intermediate size 512 3,072
Vocabulary size 10,000 30,522

vocabulary learned by the pre-trained models since the models’
pre-trained weights depend on their specific encoding of tokens.
Husain et al.,, on the other hand, did not rely on parameter
weights of pre-trained models, which is why they built a new
vocabulary from the fine-tuning data (the training set). They
used Byte-Pair Encoding (BPE) [45] for that process, while the
pre-trained English model (BERT},se) built its vocabulary using
WORDPIECE tokenization [39]. Both BPE and WORDPIECE
use subword information and work very similarly in creating
the token vocabulary. Hence, we do not expect the choice
between BPE and WORDPIECE tokenization to affect our results
significantly. Still, to keep things consistent in our experiments,
we also used WORDPIECE tokenization to build our vocabulary.
For the pre-trained code models, the vocabulary was built from
the pre-training data, while the non-pre-trained baseline models
came from the training set of our fine-tuning data.

Like Husain et al., we converted all query input to lowercase
and kept the case information of the source code input. The
same is true for the pre-trained models. We used the uncased
version of Devlin et al.’s English model [9] and pre-trained our
source code models case-sensitively.

4 EXPERIMENTAL DESIGN

To examine the effectiveness of transfer learning for code search,
we devised several experiments with different configurations for
pre-training and fine-tuning of Multimodal Embedding Models
(MEMs). We use two distinct datasets to simulate a typical
transfer learning scenario in which the pre-training data differs
from the fine-tuning one. The pre-training dataset consists of
function definitions from open-source projects on GITHUB,
while the fine-tuning one contains STACKOVERFLOW questions
and corresponding code snippet answers. In the context of the
study, we formulate the following research questions.

RQ1 Does a pre-trained English natural language model improve
the code search performance?

For a code search model to perform well, it needs to have a
good understanding of the user’s information need, which is
expressed in the form of a natural language query. To this end, we
use a pre-trained English language model to examine whether
the pre-training allows the code search model to learn better
query representations and leads to better code search results.



TABLE 6: Approximate folds size after the 10-fold split

Language Total  Training Validation  Test

JAVASCRIPT 85,049 68,889 7,654 8,504
JAvA 71,194 57,667 6,407 7,119
PYTHON 87,231 70,657 7,850 8,723
Tor 243474 197,213 21,912 24,347

RQ2 Does a pre-trained single-language source code model improve
the code search performance?

For the code search model to retrieve a relevant code snippet
from the search corpus for a given query, it has to build good
representations of the source code snippets in the search corpus.
To answer this question, we pre-train a source code model on
a specific programming language (e.g., JAVA), fine-tune and
evaluate it on data of the same programming language (JAVA).

RQ3 Does a pre-trained English natural language model in
combination with a pre-trained single-language source code
model improve the code search performance?

This research question is the combination of research questions
RQ1 and RQ2. The hypothesis is that if a pre-trained natural
language model and a pre-trained source code model both lead
to better code search performance, the combination of the two
might lead to even better performance.

RQ4 Does a pre-trained multi-language source code model improve
the code search performance?

For this purpose, we pre-train a source code model on several

programming languages, fine-tune it, and evaluate it on a single

programming language and a multi-language search corpus.

RQ5 Does the combination of an information retrieval method and

transfer learning model improve the code search performance?
For this research question, we investigate the possibility of
combining an information retrieval method, i.e., LUCENE, with
all the MEMs investigated for the above research questions.

In the following, we describe the methodology we applied
to answer the research questions mentioned above. We provide
all the details about the study in our replication package [13].

4.1

To evaluate the models deriving from our approach, we apply
10-fold cross-validation to all the experiments by splitting the
entire dataset into ten equal folds and using nine for training and
one for testing. We further split the data from the nine training
folds into 90 % training and 10 % validation data, leaving us with
the fold sizes of Table 6. With the number of observations from
the cross-validation, we can apply statistical tests to mitigate
the risk of spurious differences. Since some question posts on
STACKOVERFLOW might be related to multiple programming
languages, to avoid duplicates and ambiguities, we removed
such intersections in the case of the TOP dataset. This cleaning op-
eration resulted into a removal of 1,145 (=20.47%) pairs from TOP.

To test our models” performance, we apply two different
strategies when evaluating:

Methodology

1K For each query in our test set, we search for the correct
answer among 1,000 code snippets (the correct code snippet
and 999 distractor snippets), the evaluation strategy as
adopted by Husain et al. [34]. The distractor snippets are
selected randomly from our test set. While a search corpus
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of 1,000 code snippets is small, a fixed search corpus size
makes our results uniformly comparable between different
programming languages.

Full We use the full test set as a code snippets corpus for each
of the queries to simulate a more realistic scenario in which
developers could use such an approach.

As for evaluation measures, we use the Mean Reciprocal
Rank (MRR), top-k, and Aroma accuracy metrics, which are
described in the following.

4.2 Evaluation Metrics

Typical evaluation metrics for Information Retrieval (IR) are
precision, recall, F-measure, and Discounted Cumulative Gain
(DCG). These metrics only make sense if several documents in
the search corpus are relevant. If, instead, there is precisely one
relevant (and known) document in the corpus, the reciprocal
rank and top-k accuracy are more suitable metrics. We use these
metrics to evaluate the performance of our approach, with the
addition of the Aroma score metric to determine how good the
choices that the techniques predict as an alternative are.

Mean Reciprocal Rank (MRR). The reciprocal rank is the inverse
rank of the relevant document [46]. For instance, if the rele-
vant document is returned at position 4, the reciprocal rank is
1/4=0.25, if it is returned at position 1, the reciprocal rank is
1/1=1. The intuition behind the reciprocal rank is that if the rel-
evant document appears at position k, the user must go through
k documents to find the relevant one. At this point, the precision
is 1/k, which is also the reciprocal rank. Finally, the MRR is the
average of multiple reciprocal ranks, i.e., from various queries.

Top-k accuracy. The top-k accuracy metric expresses how often,
overall the evaluation samples, a predicted position of the
document is within the first £ relevant documents [47]. Applied
to our context, the simple intuition behind this metric is to
express how many documents a user has to read before finding
the correct one. We compute and report top-1, top-3, top-5, and
top-10 accuracy values.

Aroma-based similarity score. The metrics mentioned above help
understand how well a model performs to rank the expected
code snippet associated with a specific STACKOVERFLOW query.
However, we cannot exclude that other code snippets might
be legitimately associated with multiple STACKOVERFLOW
titles, even if they do not belong to the same post. Therefore,
a model might potentially rank as first a code snippet that is
not correspondent to the ground truth but, at the same time,
represents a good match for the given query. In practice, we
need a way to establish how good are the models in identifying
alternative solutions to the oracle.

For this reason, we employ an evaluation metric based on
Aroma [48], a tool for code-to-code similarity tool considering
the structural aspects of source code. In particular, Aroma was
proved effective in identifying similarities between partial code
snippets, e.g., obtained from STACKOVERFLOW. Similar to other
contributions [49], [50], we use Aroma to define a metric for the
similarity between the answers in our evaluation set. This metric
is intended to mimic the manual assessment of the correctness
of search results but in an automatic and reproducible way [50],
without relying on human judgment that, considering the size
of our dataset, would be infeasible.

The original Aroma implementation uses ANTLR 4 to parse
the source code and extract the structural features. The only



support available at the time of our experimentation was JAVA.
For this reason, we implemented a structural feature extractor
for PYTHON and JAVASCRIPT. Then, Aroma computes the
number of overlapping structural features between a pair of
snippets. Such a number is the one we used as the basis for the
Aroma-based similarity score we used in our experimentation.
The Aroma tool also applies other steps for pruning and
clustering, but they are intended to be used for other purposes,
i.e., code recommendation [48].

Given a pair of snippets, Aroma returns an integer number.
We normalize such a value between 0.0 and 1.0 by using the
following procedure. Given a text query and actual value, i.e.,
the code snippet that is expected to be ranked as first, we retrieve
the number of overlapping Aroma features between the true
code and all the possible code snippets a compared model could
choose as the best association. We then rank these values, i.e.,
we transform the scores into rank positions, and apply a simple
min-max normalization, therefore resulting in values between 0.0
and 1.0. As a result, we can compute the Aroma similarity score
between the expected snippet and the one the model selected
as first for each instance of our test set. For the sake of clarity,
we refer to such a similarity score as “Aroma.”

4.3 Compared Models

We adopt a specific terminology for our experiments to identify
the type of models to which we refer. We use the following
pattern to express the models we evaluate: MEM-{Eg+E.}-
[Training]-(Test). The pairs of brackets represent the different
components of the models. In particular, the curly brackets
describe the dataset we used for pre-training. The first part is for
the query encoder, i.e., I;, with a possible value as NO, meaning
we initialize by random values the weights for the encoder, or
EN, where we use the uncased version of Devlin et al.’s English
model [9], [31]. Instead, the code encoder can be either No, or
one of the languages used for pre-training, i.e., JAVASCRIPT
(Js), JAVA (Ja), PYTHON (PY), TOP (tP), or ALL (AL). The square
brackets represent the training component, i.e., fine-tuning: No,
Js, JA, PY, TP, and AL. Finally, the round brackets represent the
target search language, i.e., test, we use for the evaluation, with
values: Js, JA, PY,and TP.

It is worth noting that some produced combinations
correspond to some of the baselines we discuss in the following
subsection. Here, we describe the models that represent the
main contribution of this work. The complete list of experiments
is published online in our replication package [13].

Pre-trained query models (RQ1). First, we use Devlin et al.’s [9]
pre-trained English model BERT},6. (uncased), which is publicly
available [31], and applied it to the query encoder E;. It means
that the weights of the query encoder were initialized with the
weights of the pre-trained English model. In this scenario, the
code encoder F, is not pre-trained, i.e., its weights are initialized
with random values. The models used for comparison when
we address this research question are expressed in the form:
MEM—{EN+NO}—[LANG] —(LANG).

Pre-trained code models (RQ2). Then, we use our own pre-trained
source code models (see Section 3.1) to initialize the weights
of the code encoder E.. This time, the weights of the query
encoder F; are initialized with random values. We limited the
experiments to cases in which the pre-training is performed
with the same programming language as the fine-tuning. We
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note that cross-language learning, such as using a pre-trained
PYTHON model to fine-tune on JAVA data, could make sense
in a scenario where the target language is so rare that there is
not enough data available to justify pre-training. However, we
expect a pre-trained multi-language source code model, ie., a
model that was trained on a mix of programming languages,
to yield better results. We examine multi-language source
code models in RQ4. The models are expressed in the form:
MEM—{NO+LANG}~[LANG] - (LANG).

Pre-trained query and code models (RQ3). As a next step, we
combine the pre-trained query and code models to see how they
complement each other. Both the weights of the query encoder
E, and code encoder E, are restored from the respective
pre-trained model. Here, the models are expressed in the form:
MEM-{EN+LANG}-[LANG] -(LANG).

Pre-trained multi-language code models (RQ4). Afterward, we
examine the source code models pre-trained on several
programming languages. We pre-trained two such models: one
on JAVASCRIPT, JAVA, and PYTHON data (TOP) and another
one on JAVASCRIPT, JAVA, PYTHON, PHP, GO, and RUBY data
(ALL). Again, we distinguish between only pre-training the
query encoder E, only pre-training the code encoder F,, and
pre-training both. For these experiments, in addition to the
single-language datasets, we fine-tune and evaluate the models
on a multi-language dataset consisting of JAVASCRIPT, JAVA,
and PYTHON samples (TOP).

We pre-train two such models: one on JAVASCRIPT, JAVA,
and PYTHON data (TOP) and another one on JAVASCRIPT, JAVA,
PYTHON, PHP, GO, and RUBY data (ALL). Again, we distinguish
between only pre-training the query encoder FE,, only pre-
training the code encoder E., and pre-training both. For these
experiments, in addition to the single-language datasets, we
fine-tune and evaluate the models on a multi-language dataset
consisting of JAVASCRIPT, JAVA, and PYTHON samples (TOP).

4.4 Baselines

Random. First, we build a simple baseline that we call RANDOM,
since it is based on the random initialization of the weights
for both the query and code encoders. We do not apply any
fine-tuning, and we compute the cosine distance on the target
search language with the “random” encoders as they are. The
baseline is expressed in the form: MEM-{NO+NO}-[NO]-(LANG).

Zero-shot. Second, we evaluate all models without fine-tuning
them. This is often referred to in the literature as zero-shot
learning [51], [52]. We include this configuration as a baseline
to estimate how useful the source code model is in itself, i.e.,
without any knowledge of the downstream task. The term used
for such a baseline is: MEM-{ E+E.}-[NO]-(LANG).

No pre-train. Then, we train the MEM without any pre-training,.
We use the same hyperparameters as in Table 5 to make our
baseline comparable to the experiments with pre-trained models.
This baseline allows us to measure the effect of transfer learning,
i.e,, how much better the pre-trained models perform compared
to a model trained from scratch. We refer to this baseline as:
MEM-{NO+NO}-[LANG] —(LANG).

Information Retrieval (LUCENE). We build a LUCENE (v8.6.1)
baseline with default parameters, as suggested by Hussain
et al. [34] (they mention ELASTICSEARCH, which is based on
LUCENE). LUCENE is a widely used open-source search engine



and retrieves documents using an inverted index structure and tf-
idf weighting between query and document. By default, LUCENE
converts all text to lowercase and splits tokens based on grammar.
The intention behind this baseline is to give an estimate of
what is possible with a low-effort and low-cost, “out-of-the-box”
solution and to assess the usefulness of the MEM. Note that the
LUCENE model does not require any training: it simply indexes
all code snippets from the test set and retrieves them during
evaluation. We refer to the LUCENE models with the string
LU-(LANG), where we only indicate the target search language.

DEEPCS. As for a comparison with existing approaches for code
search based on neural networks, we executed the experiments
by using DEEPCS by Gu et al. [5], which we consider as the
state of the art (see Section 6). We trained the DEEPCS by
using our data and producing a model for each programming
language. We refer to DEEPCS models as: DC-[LANG]-(LANG).
The two parts correspond to the language used for training and
test, respectively. To have a fair comparison, we adapt some of
the default configuration parameters of DEEPCS. In particular,
(1) we use a maximum sequence length for the code of 256,
instead of 50, (2) a vocabulary size of 30,522, instead of 10,000,
(3) a batch size of 32 instead of 64.

4.5 Combined Models (RQ5)

Finally, we produce a combination of an information retrieval
method, i.e.,, LUCENE, with all the models produced for the
research questions mentioned above. It is worth noting that, for
RQ5, we only consider the Full evaluation strategy. In particular,
we build the combined model as a pipeline. First, for each query,
LUCENE is used on the entire test set to establish the rankings.
Expressly, we set up a limited number of results to 1,000, which
is the same number of samples used for the 1K evaluation
strategy. Second, when evaluating the MEMs, we limit the
choices between the 1,000 samples that LUCENE chose. We can
then consider LUCENE to act as a sort of filter, reducing the
number of samples between the MEM has to choose. We refer
to these models as LUMEM-{ Eg+E.}-[Training]-(Test), similarly
to what we do with the MEMs.

4.6 Execution Setup

Pre-training and fine-tuning were executed on a machine with
an Intel Xeon Gold CPU clocked at 2.60GHz, 16 GB RAM,
and a single Nvidia Tesla V100 GPU with 32 GB of memory.
Pre-training took between 1.6 and 11 days, depending on the
size of the pre-training dataset. Fine-tuning on a single fold (5
epochs) took between 35 minutes and 2 hours, depending on
the size of the fine-tuning dataset.

4.7 Threats to Validity

Internal validity. The most significant limitation to our experimen-
tal design comes from the nature and quality of our evaluation
dataset. While using STACKOVERFLOW questions and code
answers allows us to gather large amounts of evaluation data,
we cannot be sure that they are a valid proxy for measuring code
search performance. We may measure something else instead,
such as how well our model can find the correct answer among
multiple possible answers to a STACKOVERFLOW question.
Furthermore, not all questions ask for a code answer to a
concrete implementation problem. Some questions touch on
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more high-level, abstract topics, such as programming style or
best practices. The answer to these questions may still contain
code examples for demonstration purposes. We observe a
significant semantic discrepancy between the query and the
corresponding code snippet in these cases. Related to this is that
code snippets alone might not give a comprehensive answer
to the question posed, and it only makes sense in the context
of the surrounding natural language explanations of the answer
post. This is especially true because, for answers that contain
several code snippets, we concatenate them into one, which
makes the code snippets less cohesive. To mitigate this issue, we
introduced the Aroma score as a metric to measure the relevance
of the code snippets that the approaches classify as the correct
answer (see Section 4.2).

Additionally, the code snippets can contain comments,
which we did not remove during pre-processing. While we
would want the comments to be included in the search results
returned to the user, they may be considered noise to our code
encoder, which was pre-trained on source code where comments
were removed. The same is true for console outputs, which are
not removed from the evaluation dataset.

External walidity. Our results are limited in the way that they
can be generalized to other source code analysis tasks. While
problems such as code summarization and code generation are
very similar to code search, we did not evaluate those problem
tasks experimentally. This limitation is especially true because
both those problems require generative models that produce
an output sequence (a natural language sequence in code
summarization and a source code sequence in code generation).
The models we developed are only capable of finding code
snippets from a corpus of existing snippets.

Moreover, through our study, we cannot provide any insights
on the type of information transferred, e.g., syntax or semantics.
However, recent research by Iyer et al. [53] suggests that the
success of MLM pre-training, as in the case of BERT, is most
likely due to it learning higher-order distributional statistics
that make for a useful prior for subsequent fine-tuning and not
to its ability to discover syntactic and semantic mechanisms.
Affirming the same in the case of code processing is indeed an
exciting and more sophisticated future work, requiring extended
and specific experimentation.

5 RESULTS

In this section, we present the results from the experiments
described in Section 4. We introduce the results of all experiments
involving a single-language pre-trained model. Then, we present
the results of the pre-trained multi-language models. We
proceed with the analysis of the top-k accuracy values trend.
Finally, we conclude with the analysis of the combined models,
ie., LUCENE and MEMs. To compare the observations, we
applied the “Kruskal-Wallis H” test [54], and “Vargha-Delaney
Aqo” test [55], for the effect size to characterize the magnitude
of such differences.

Table 7 summarizes the results of all the experiments we
executed, showing the median values over 10 folds for all the
performance metrics, i.e., MRR, Aroma, top-1, top-3, top-5,
top-10, and for both the strategies, i.e., 1K, Full. In the following,
we will refer to Table 7, with the addition of some plots to help
the analysis. It is worth noting that we removed RANDOM and
zero-shot results from the table and plots since their performance
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TABLE 7: Median values over 10 folds for all the computed metrics. We highlight in bold the maximum scores per language test set

1K Full

Language RQ Type
MRR  Aroma top-1 top-3 top-5 top-10 MRR Aroma top-1 top-3 top-5  top-10
JAVASCRIPT ~ RQ1 LU-(JS) 02374 05321 01705 02602 03061 03695 01328 04360 0.0899 0.1436 0.1723  0.2148
DC-[JS]-(JS) 01566 04044 00753 01673 02239 03253 00446 03114 00156 0.0399 0.0572 0.0934
MEM—{NO+NO}-[JS]-(JS) 0.0970 05633 0.0437 0.0946 0.1327 01994 0.0241 04261 00081 0.0195 0.0302 0.0496
MEM-{EN+NO}-[JS]-(JS)  0.1483 05663  0.0747 01560 02086 02957 0.0409 04299 0.0147 00356 0.0528 0.0874
RQ2 MEM—{NO+JS}-[JS]-(JS) 02975 05652 01819 03340 04222 05395 01106 04102 00522 01138 01544 0.2219
RQ3 MEM—{EN+JS}-[JS]-(JS) | 03105 0.5902 0.1921 = 0.3512 0.4423 05579 0.1162 04435 00544 01198 0.1626 0.2392
RQ4 MEM-{NO+TP}-[JS]-(JS) 02484 05428 0.1465 02769 03500 04582 0.0876 03995 0.0394 00869 01222 0.1838
MEM-{EN+TP}-[JS]-(JS) 02807 05688 01686 03171 03984 05133 01020 04314 00489 0.1028 0.1413  0.2075
MEM—{NO+AL}-[JS]-(JS) 02313 05455 01334 02554 03236 04300 0.0785 04042 00343 0.0783 0.1065 0.1628
MEM—{EN+AL}-[JS]-(JS) 03101 05599 01951 03486 04303 05496 01172 04161 00557 01200 0.1640 0.2409
RQ5  LUMEM—{NO+NO}-[JS]-(JS) = - - = = = 00702 04533 0.0243 00630 0.0935 0.1540
LUMEM—{EN+NO}-[JS]-(JS) - - - - - - 00985 04581 0.0383 00948 0.1372 02134
LUMEM-{NO+JS}-[JS]-(JS) = = = = = = 01768 04478 0.0878 0.1909 02541 0.3610
LUMEM—{EN+JS}-[JS]-(JS) - - - - - - 01842 04721 0.0926 01998 02656 03764
LUMEM—{NO+TP}-[JS]-(JS) = = = = = = 01495 04350 0.0718 01549 02119 03096
LUMEM—{EN+TP}-[JS]-(JS) - - - - - - 01672 04577 00828 0.1774 02403  0.3439
LUMEM—{NO+AL }-[JS]-(JS) - - - - - - 01422 04407 0.0663 0.1469 0.1998 02971
LUMEM-{EN+AL}-[JS]-(JS) - - - - - - 0.1840 04476 | 0.0932 0.1971 02662 03733
JAvA RQ1 LU-(JA) 02170 04983 0.1542 02381 02799 03409 01267 04055 0.0849 0.1366 0.1660  0.2092
DC-[JA]-(JA) 01585 03924 00754 01656 02241 03275 00503 03015 00174 0.0436 0.0653 0.1090
MEM—{NO+NO}-[JA]-(JA) 0.0860 05445 0.0353 0.0807 0.1159 01795 0.0024 03001 0.0004 0.0011 0.0019 0.0032
MEM—{EN+NO}-[JA]-(JA) 01258 05520 0.0601 0.1296 01750 02560 0.0024 02912  0.0004 0.0009 0.0015 0.0034
RQ2 MEM—{NO+JA}-[JA]-(JA) 0.1418 05493 0.0645 0.1475 02005 02994 0.0431 04099 00146 0.0374 0.0556 0.0920
RQ3 MEM-{EN+JA}-[JA]-(JA) | 02907 0.5834 01732 0.3272 04170 05401 0.1146 04487 00532 01149 0.1590 0.2391
ROQ4 MEM-{NO+TP}-[JA]-(JA) 02217 05281 01213 02418 03170 04369 00790 04004 0.0350 0.0768 0.1071 0.1631
MEM-{EN+TP}-[JA]-(JA) 02636 05609 01534 02914 03779 04944 01007 04350 0.0464 0.0993 0.1373  0.2067
MEM—{NO+AL}-[JA]-(JA) 02033 05305 01085 02206 02940 04026 0.0727 04003 0.0301 0.0689 0.0963 0.1486
MEM—{EN+AL}-[JA]-(JA) 02845 05504 01688 03219 04020 05171 01114 04191 00508 01131 0.1545 0.2308
RQ5  LUMEM—{NO+NO}-[JA]-(JA) = - - = = = 00199 03699 0.0039 00114 0.0186 0.0346
LUMEM—{EN+NO}-[JA]-(JA) - - - - - - 00212 03576 0.0042 00117 0.0214 0.0383
LUMEM—{NO+JA}-[JA]-(JA) - - - - - - 01094 04515 0.0447 01063 0.1530 0.2362
LUMEM-{EN+JA}-[JA]-(JA) - - - - - - 0.1834 04821 0.0894 0.1974 02662 0.3826
LUMEM—{NO+TP}-[JA]-(JA) = = = = = = 0139 04425 0.0630 0.1438 02010 0.2988
LUMEM—{EN+TP}-[JA]-(JA) - - - - - - 01676 04717 00795 01761 02412  0.3526
LUMEM—{NO+AL }-[JA]-(JA) - - - - - - 01331 04432 00578 01330 0.1875 0.2865
LUMEM—{EN+AL }-[JA]-(JA) - - - - - - 01785 04581  0.0867 0.1892 02565 03712
PYTHON RQ1 LU-(PY) 02128 05171 01529 02317 02722 03274 0.1217 04248 0.0841 0.1307 0.1560 0.1947
DC-[PY]-(PY) 02474 04444 01301 02755 03659 05054 00718 03272 00266 0.0651 0.0968 0.1603
MEM—{NO+NO}-[PY]-(PY) 0.1092 05617 0.0491 0.1094 01508 02213 0.0018 03100 0.0003 0.0008 0.0013  0.0026
MEM—{EN+NO}-[PY]-(PY) 0.1583 05805 0.0791 0.1664 02254 03218 0.0023 03162 00002 0.0011 0.0017 0.0034
RQ2 MEM—{NO+PY}-[PY]-(PY) 02360 05723 01320 02606 03393 04536 0.0586 04050 0.0230 0.0550 0.0767 0.1240
RQ3 MEM-{EN+PY}-[PY]-(PY) 02683 = 0.5941 01543 03017 03861 05066 0.0912 04425 00394 0.0901 01240 0.1910
RO4 MEM-{NO+TP}-[PY]-(PY) 02477 05479 01403 02772 03549 04686 0.0571 03945 00212 0.0525 00765 0.1219
MEM-{EN+TP}-[PY]-(PY) 02990 05773 01808 03379 04232 05454 01074 04299 00500 0.1058 0.1496 0.2234
MEM-{NO+AL}-[PY]-(PY) 02322 05564 01288 02563 03339 04508 0.0622 04061 00244 00575 0.0832 0.1303
MEM—{EN+AL}-[PY]-(PY) | 03069 0.5681 01893 0.3473 04324 05479 0.1123 04207 0.0518 0.1142 0.1582 0.2289
RQ5  LUMEM-{NO+NO}-[PY]-(PY) = = = = = = 00227 03669 0.0049 00142 0.0222 0.0431
LUMEM—{EN+NO}-[PY]-(PY) - - - - - - 00270 03686 0.0066 00185 0.0292 0.0524
LUMEM—{NO+PY}-[PY]-(PY) - - - - - - 0.1342 04422 00594 0.1367 01911 0.2858
LUMEM—{EN+PY}-[PY]-(PY) - - - - - - 01724 = 04745 0.0831 0.1835 02499 0.3600
LUMEM—{NO+TP}-[PY]-(PY) = = = = = = 01313 04333 0.0554 01353 0.1864 0.2791
LUMEM—{EN+TP}-[PY]-(PY) - - - - - - 01826 04645 0.0906 01935 02649 0.3809
LUMEM—{NO+AL }-[PY]-(PY) - - - - - - 01374 04424 0.0625 0.1370 0.1935 0.2916
LUMEM—{EN+AL }-[PY]-(PY) - - - - - - 0.1870 04522  0.0931 0.2002 02702 0.3824
Tor ROQ4 LU-(TP) 02521 05278 01870 02757 03179 03774 01124 03956 00771 01213 01456 0.1812
DC-[TP]-(TP) 03241 04855 02052 03663 04536 05703 0.0494 03038 00182 0.0444 0.0654 0.1042
MEM—{NO+NO}-[TP]-(TP)  0.0227 03669 0.0057 0.0150 0.0237 0.0422 0.0019 02720 0.0004 0.0010 0.0015 0.0028
MEM—{EN+NO}-[TP]-(TP)  0.0229 03919 0.0060 0.0157 0.0238 0.0431 0.0019 02969 00004 0.0010 0.0014 0.0028
MEM—{NO+TP}-[TP]-(TP) 03861 06111 02610 04408 05277 0.6397 0.0990 03911 00469 0.1001 0.1371 0.1996
MEM-{EN+TP}-[TP]-(TP) | 04277 0.6348 02950 0.4905 05818 0.6971 0.1151 04122 00568 0.1193 0.1606  0.2299
MEM—{NO+AL}-[TP]-(TP) 04010 06173 02746 04581 05420 0.6496 01072 03962 00525 0.1092 0.1477 0.2145
MEM—{EN+AL}-[TP]-(TP) 04179 06289 02860 04792 05710 06846 01104 03931 00545 01129 01528 0.2220
RQ5  LUMEM-{NO+NO}-[TP]-(TP) = = = = = = 00342 03353 0.0092 00252 0.039% 0.0710
LUMEM—{EN+NO}-[TP]-(TP) - - - - - - 00360 03556 0.0093 00262 0.0413 0.0746
LUMEM—{NO+TP}-[TP]-(TP) - - - - - - 0.1824 04295 0.0932 0.1971 02629 03727
LUMEM—{EN+TP}-[TP]-(TP) - - - - - - 02050 04478 01071 0.2233 02950 0.4128
LUMEM—{NO+AL }-[TP]—-(TP) = = = = = = 01905 04345 0.0980 02044 02743 0.3850
LUMEM—{EN+AL }-[TP]-(TP) - - - - - - 01989 04335 01029 02160 02886  0.4066

are close to 0 for all the experiments. A detailed description of
the result of all the experiments, together with their statistical
evaluation, can be found in our online replication package [13].

5.1 Pre-Trained Single-Language Models (RQ1-RQ3)

We now describe the results of the experiments involving
models that were pre-trained on English natural language or
a single programming language.

Fig. 3 shows the box plots of the 10-fold cross-validation
MRR and Aroma values for all the performed experiments
where we use a single language as test set, considering the 1K
strategy. We sorted the experiments in the plots so that they
could be observed in increasing order as we discuss a new
research question. We also highlight to which research questions
each of the experiments refer.

Across all the experiments, the RANDOM and zero-shot
baselines, which are not presented in Table 7 and Fig. 3, reach the
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Fig. 3: MRR and Aroma values comparison for single-language test sets, using the 1K strategy.

lowest MRR values, close to 0. It indicates that the pre-training
tasks alone are insulfficient for doing code search. Considering
our model architecture, this is to be expected. The MEM only
learns unimodal embeddings during pre-training. However,
for code search, it requires a multimodal understanding of the
data, i.e.,, how natural language sequences relate to source
code sequences. This relationship is only learned during the
fine-tuning phase. We address the research questions related
to single-language models individually in the following.

Pre-trained query-only encoder (RQ1). Fig. 3 shows the results
regarding the 1K strategy of the (1) LUCENE LU-(LANG),
(2) DEEPCS DC-[LANG]-(LANG), (3) non-pre-trained MEM
MEM—{NO+NO}-[LANG]-(LANG), (4) the model with the pre-trained
query encoder MEM-{EN+NO}-[LANG]-(LANG), but not pre-trained
on the code encoder.

It becomes clear that the LUCENE baseline performs better
than the MEMs across all programming languages, reaching a
median MRR score of 0.2374, 0.2170, and 0.2128, for JAVASCRIPT,
Java, and PYTHON, respectively. Compared to the non-pre-
trained baselines, however, the pre-trained models show a slight
improvement. Instead, DEEPCS results to be better than all the
MEMs for all the languages, surpassing LUCENE only in the
case of PYTHON (0.2474). Nevertheless, considering the Aroma
score, we can notice that the MEMs perform better than the
others, reaching a median value of 0.5663, 0.5520, and 0.5805, for
JAVASCRIPT, JAVA, and PYTHON, respectively. With this regard,
DEEPCS is considerably behind the other approaches with the
median Aroma scores of 0.4044 (JAVASCRIPT), 0.3924 (JAvA),
and 0.4444 (PYTHON).

In the case of the Full strategy (see Table 7), LUCENE
surpasses all the other approaches considering the MRR metric:

0.1328, 0.1267, and 0.1217, for JAVASCRIPT, JAVA, and PYTHON,
respectively. In particular, the query-only pre-trained model
gets very slow performance in the case of JAVA (0.0024) and
PYTHON (0.0023) as median values for MRR. Instead, Aroma
scores of MEM-{EN+NO}-[LANG]-(LANG) models and LUCENE are
relatively similar in the case of JAVASCRIPT, i.e., 04360 and
0.4299, respectively; in the other cases, LUCENE gets the best
results for Aroma than all the others, i.e., 0.4055 for JAVA and
0.4248 for JAVASCRIPT.

RQ1 - In summary: The pre-trained query-only MEM-
{EN+NO}-[LANG]-(LANG), do not overcome the baselines of
LUCENE and DEEPCS in terms of MRR score, in the case
of JAVASCRIPT, JAVA, and PYTHON, for both the 1K and
Full strategies. However, they get similar Aroma scores to
LUCENE for the 1K strategy.

Pre-trained code-only encoder (RQ2). We now refer to the model
with the pre-trained code encoder MEM-{NO+LANG}-[LANG]-(LANG)
in Fig. 3, i.e,, we do not pre-train the query but only the code
encoder. In terms of MRR, the code-only pre-trained models
outperform the query-only pre-trained ones on all datasets
when considering the 1K strategy. While the pre-trained model
falls behind the LUCENE baseline on JAVA data, the pre-trained
models achieve a higher median MRR in the case of JAVASCRIPT
and PYTHON. The lower performance for JAVA can be explained
by the smaller size of the fine-tuning dataset compared to the
JAVASCRIPT and PYTHON sets (see Table 6). DEEPCS is still
the best approach in the case of PYTHON. As for the Aroma
score, there is no considerable difference between the query-only
pre-trained models.



In the case of the Full strategy, the code-only pre-trained
model improves the MRR scores for all three languages. The
code-only pre-trained model is not better in terms of Aroma

than the query-only one, exclusively in the case of JAVASCRIPT.
Instead, the model is statistically slightly better than Lu-(Ja).

As for PYTHON, the code-only pre-trained model is better than
the query-only version.

RQ2 - In summary: The pre-trained code-only MEM-
{NO+LANG} - [LANG] -(LANG) performs better than the pre-trained
query-only MEM-{EN+NO}-[LANG]-(LANG), for both the MRR
and Aroma scores, considering both the 1K and Full strate-
gies. However, in the case of 1K strategy and MRR score,
LUCENE remains the best model for JAVA and JAVASCRIPT,
whereas MEM-{NO+PY}-[PY]-(PY) performs similarly to
DEEPCS. In the case of the Full strategy, the pre-trained code-
only MEMs still falls behind LUCENE for every language.

Pre-trained query and code encoder (RQ3). We introduce the
model with both the pre-trained query and code encoders
MEM-{EN+LANG}-[LANG]-(LANG). As Fig. 3 shows, when combining
the pre-trained query encoder with code encoder MEM-{EN+LANG}-
[LANG]-(LANG), the MEM outperforms both the LUCENE and the
other baselines, including DEEPCS that was the best model so
far in case of PYTHON. This confirms our hypothesis from RQ3
that combining pre-trained models for each modality leads to
even more significant improvements on code search. Also in
the case of Aroma, there is a considerable improvement for all
the languages: 0.5902 (JAVASCRIPT), 0.5834 (JAvA), and 0.5941
(PYTHON).

With the Full strategy, the joint contribution of both query
and code pre-trained encoders improves against the versions
pre-trained on one modality only, for both MRR and Aroma
scores, but not yet surpassing the performance of LUCENE.

RQ3 - In summary: Pre-trained query and code MEM-
{EN+LANG}-[LANG]-(LANG) results to be the best model in
terms of MRR and Aroma scores, in the case of the 1K
strategy. However, in the case of the Full strategy, MEMs
do not overcome the LUCENE’s performance.

5.2 Pre-Trained Multi-Language Models (RQ4)

Now we present the results of the MEMs that we pre-trained
on several programming languages. First, we focus on the
pre-trained models on the combination of JAVASCRIPT, JAVA,
and PYTHON data (TOP dataset). Then, we show the results of
the pre-trained models on the combination of JAVASCRIPT, JAVA,
PYTHON, PHP, GO, and RUBY data, i.e., the ALL dataset. While
the single-language models from Section 5.1 were only evaluated
on single-language corpora, the experiments on multi-language
models were additionally tested on the multi-language corpus
TOP consisting of STACKOVERFLOW question and answers for
JAVASCRIPT, JAVA, and PYTHON.

Pre-trained on TOP dataset. We refer to the models in Fig. 3
that were pre-trained on the TOP dataset and evaluated on
single-language corpora, using the 1K strategy. We now include
the models with the pre-trained encoders, i.e., MEM-{NO+TP}-
[LANG]-(LANG), and MEM-{EN+TP}-[LANG]-(LANG). We observe that
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all models in which only the code encoder was pre-trained, e.g.,
MEM—{NO+TP}-[JS]-(JS), perform similarly or better MRR score
than their LUCENE baselines. The combined pre-trained models,
e.g., MEM-{EN+TP}-[JS]-(JS), improve on the LUCENE baselines
in all cases. The Aroma score, instead, is never higher than the
versions of MEM pre-trained on both code and query modalities
but with a single language, e.g., MEM-{EN+JS}-[JS]-(JS).

As for the Full strategy, none of the MEMs is able to surpass
the performance of LUCENE. Considering the Aroma score,
there is not much difference between LUCENE, and other MEMs.

Fig. 4 shows the box plots of the MRR values metric for
the experiments we evaluate on the TOP test set, considering
the 1K strategy. When evaluating this test set, it stands out
that the pre-trained MEMs outperform the baselines, when
pre-training at least the code modality. It is interesting to notice
that these models considerably surpass both LUCENE and
DEEPCS methods, performing a median value of 0.4277 for
MRR (0.2521 LUCENE, 0.3241 DEEPCS) and 0.6348 for Aroma
(0.5278 LUCENE, 0.4855 DEEPCS).

Instead, in the case of the Full strategy, the MEM-{EN+TP}-
[TP]-(TP) model is slightly able to overcome the performance of
LUCENE, reaching a median value of 0.1151 MRR, against 0.1124
of LUCENE. The Aroma media value as well is slightly better
than the one performed by LUCENE, 0.4122 instead of 0.3956.

Pre-trained on ALL dataset. Finally, we refer to the models in
Fig. 3 and Fig. 4 that were pre-trained on the ALL dataset
and evaluated on single-language search corpora. Again, the
combination of pre-training the query encoder and the code
encoder yields the best results. These combined pre-trained
models outperform both the non-pre-trained baselines and
the LUCENE baselines. However, it seems that if the search is
conducted on a single-language corpus, the ALL dataset is not an
ideal candidate for pre-training the MEM. In this case, the better
option is to pre-train on a single-language corpus of the same
programming language, e.g., MEM-{EN+JS}-[JS]-(JS) (see also
Section 5.1). It is also confirmed by the best results for the Aroma
score performed by the single language pre-trained MEM.

When looking at the results of the multi-language search
for the models pre-trained on ALL (Fig. 4), we observe similar
results to the models pre-trained on TOP, both in terms of MRR
and Aroma.

As for the Full strategy, we confirm the results mentioned
above, suggesting overall to use an MEM pre-trained on the
target language, rather than on ALL.

RQ4 - In summary: Pre-trained multi-language models
using TOP can help to improve the MRR and Aroma
performance for multi-language search, for both 1K and
Full strategies. However, in the case of single-language
search, the use of the same target language for pre-training,
e.g., MEM-{EN+JS}-[JS]-(JS), results to be the best choice.
Nevertheless, in the case of the Full strategy, LUCENE results
to still be the best choice.

5.3 Top-k Accuracy Values Trend

Fig. 5 shows the top-k accuracy values for varying values of k.
For clarity, we only include the results of the models that were
fine-tuned and evaluated on the TOP dataset and compare them
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Fig. 4: MRR and Aroma values comparison for the TOP test set, using the 1K strategy.
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Fig. 5: The trend of top-k accuracy values, for the best models,
using the 1K strategy.

to the LUCENE baseline, considering the 1K strategy. Refer to
Table 7 and replication package [13] for the full results.

We observe that, with increasing values of k, the discrepancy
in top-k accuracy between the MEM and the LUCENE model
grows. For k=10, the best MEM puts the correct code snippet in
the top results 70 % of the time, while the LUCENE model only
does so in 37 % of the cases. We believe that expecting the user
to look at 10 search results is acceptable, especially if the correct
code snippet appears within those results with high probability.

5.4 Combined Models (RQ5)

Fig. 6 focuses on the multi-language search case (TOP) using
the Full strategy, which is the most challenging problem we
addressed in our experiments, considering the size of the search
space, 724,347 for each of the folds. The complete results can
be found in Table 7 and replication package [13]. As can be seen
from the figure, the combination of LUCENE and MEM, e.g.,
LUMEM-{EN+TP}-[TP]-(TP), consinstently boosted the performance
with regard to the related MEMSs, e.g., MEM-{EN+TP}-[TP]-(TP).
More interestingly, the combined models are able to considerably
overcome the MRR performance of LUCENE in the case of TOP
languages, i.e., 0.1124, reaching a median value of 0.2050 when
pre-training on English and TOP, i.e., LUMEM-{EN+TP}~[TP]-(TP).

As for the Aroma score, the combined LUMEM-{EN+TP}-[TP]-(TP)
model now reaches the best median value of 0.4478.

The same phenomena can also be verified in the case of
JAVASCRIPT, JAVA, and PYTHON. For the single-language search,
the use of the combination of LUCENE and MEM, both MRR
and Aroma values are the highest met so far.

RQ5 - In summary: The combination of LUCENE and
MEM has the best performance across all the programming
languages, both in terms of MRR and Aroma scores.

5.5 Discussion

Table 8 and Table 9 give an overview of the results, in the case of
predicting a single language, i.e., JAVASCRIPT, JAVA, or PYTHON,
and the TOP languages together, respectively. At the top of the
tables, we report the MRR and top-10 absolute median values
over all the experiment, for the baseline and state-of-the-art
approaches, i.e., LUCENE and DEEPCS. We report the same
absolute values in the case of our approach, where we did not
apply any pre-train neither for the query nor code encoders, i.e.,
MEM-{NO+NO}-[LANG]-(LANG). Then, we report the results for both
MEM and LUMEM as median increments on top of the non-
pretrained model to quantify the effectiveness of pre-training.

We notice that the pre-trained models always reach higher
MRR values than the non-pre-trained ones for both the 1K and
Full strategies. The fact that pre-training has a positive effect
on code search performance means that our pre-training tasks
MCM and NLPred are suitable pre-training tasks for source code.
The difference between the pre-trained and non-pre-trained
models is particularly large when both the query encoder and
code encoder are pre-trained. Additionally, from Table 7 we
can notice that the difference becomes more significant as the
fine-tuning datasets become smaller. We conjecture that a large
fine-tuning dataset means that the model can perform well even
if it was not pre-trained. On the other hand, if the fine-tuning
dataset is small, the model runs out of data before it converges
to an optimum. In this case, the pre-training can extend the
training signal and allow the model to learn for longer, thus
reaching a better optimum overall.

Moreover, we noticed that pre-training the query encoder
on natural language is smaller than the effect of pre-training
the code encoder on source code, even though the query
encoder was pre-trained for longer and on a larger dataset
than the code encoder. We attribute this difference to the fact
that queries tend to be much shorter (around 9 tokens) than
the code snippets (around 225 tokens, see Table 4). BERT and
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Fig. 6: MRR and Aroma values comparison for the TOP test set, using the Full strategy, considering the combined models of LUCENE

and MEM.

TABLE 8: Summary of findings for the single-language test sets

1K Full
Approach Quer}f Code.
Pre-Train  Pre-Train MRR top-10 MRR top-10
LUCENE - - 0.2174 0.3409 0.1267 0.2081
DEEPCS - - 0.1650 0.3378 0.0518 0.1124
No pre-train - = 0.0924 0.1917 0.0024 0.0034
MEM - Single +0.1435  +0.2619  +0.0606  +0.1310
Top +0.1505  +0.2651  +0.0741  +0.1544
All +0.1268  +0.2403  +0.0651  +0.1369
English - +0.0465  +0.0908  +0.0001  +0.0006
Single +0.2031 = +0.3539  +0.1081  +0.2245
Top +0.1883  +0.3245  +0.1004  +0.2091
All +0.2039 +0.3452  +0.1102  +0.2279
LUMEM - - - - +0.0229  +0.0452
Single +0.1318  +0.2832
Top +0.1390  +0.2966
All +0.1344  +0.2883
English - - - +0.0257  +0.0535
Single - - +0.1797 ~ +0.3740
Top - +0.1675  +0.3523
All +0.1803  +0.3691

TABLE 9: Summary of findings for the TOP test set

1K Full

Approach Quer}f Code'
Pre-Train  Pre-Train MRR top-10 MRR top-10
LUCENE - - 0.2521 0.3774 0.1124 0.1812
DEEPCS - - 0.3241 0.5703 0.0494 0.1042
No pre-train - - 0.0227 0.0422 0.0019 0.0028
MEM - Top +0.3635 +0.5975  +0.0971  +0.1968
All +0.3784  +0.6074  +0.1053  +0.2117
English - +0.0002  +0.0009  -0.0000  +0.0001
Top +0.4050 +0.6549 +0.1133  +0.2271
All +0.3952  +0.6424 +0.1085  +0.2193
LUMEM - - - - +0.0323  +0.0682
Top - - +0.1806  +0.3700
All - - +0.1886  +0.3822
English - - - +0.0341  +0.0719
Top - - +0.2031  +0.4101
All - - +0.1970  +0.4039

the pre-training tasks are designed to learn the relationships
between tokens in a sequence, particularly for distant token
pairs. The shorter the sequence is, the less impactful the learned
contextual embeddings from the pre-training become as there
is less context information that the model can utilize.
Considering the number of experiments we performed, we
can use the results from both the 1K and Full strategies to derive
the following observations. The experiments conducted using

the 1K strategy, i.e., reducing the search pool for each of the
queries to 1,000 samples from the test set, suggest that the MEMs
based on both code and query pre-trained encoders, i.e., MEM-
{EN+LANG} - [LANG] -(LANG), allow outperforming the state of the art,
i.e., DEEPCS, and the information retrieval-based approach, i.e.,
LUCENE. The MRR scores are sufficiently high for all the pro-
gramming languages, including the multi-language one, i.e., TOP.
The top-k values indicate that MEMs can rank as first in the cor-
rect code snippets for ~220% of the cases, up to ~60% of the cases
within the first 10 results. Furthermore, the Aroma scores suggest
that MEMs are also effective in finding alternative code snippets
which are still semantically close to the given search queries.
Overall, this indicates that MEMs are the most effective ap-
proaches in ranking code snippets when the search space is 1,000.
Instead, when considering the Full strategy, i.e., the entire test
dataset for each of the search target programming languages, the
MEMs do not overcome the performance of the information re-
trieval approach, i.e., LUCENE. However, by producing a model
as the combination of LUCENE and MEM, we could get a consid-
erable boost in all the analyzed performance metrics. It suggests
using such a combined approach as a pipeline for enhanced
search engines: (1) the LUCENE approach is first run to reduce
the size of the search pool. In our experiments, we used 1,000
since we already collected some evidence of the effectiveness of
MEMs when considering the 1K strategy. These values could be
further tuned. (2) Once a set of candidates has been selected, the
search engine can run MEM on it to propose the best results.

6 RELATED WORK

The main goal of our work is to show that using transfer learning
in the form of pre-trained source code models is beneficial to
code search performance. While other approaches use more
sophisticated models and may even outperform ours, we hope
to motivate the use of transfer learning, e.g., by using one of our
pre-trained models as a starting point. In the following, we list
the current state-of-the-art approaches for deep learning tailored
for code intelligence, i.e., problems involving source code, and
a focus on code search.

6.1

The literature presents several contributions of deep learning to
solve code-related problems [56], i.e., problems in which source
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code is treated as input. In theory, our pre-trained models could
be fine-tuned to solve also the following tasks.

Clone detection consists in measuring the semantic between
codes [57], [58]. Defect detection aims at identifying whether
code contains defects [59]. Code completion expects to predict
the following tokens based on the current context [60], [61].
Code translation involves the conversion from a programming
language to another [62]. Code repair aims at fixing bugs in the
code automatically [63]. Code generation has the goal of creating
code automatically on the base of ta provided natural language
description [64], whereas code summarization aims at describing
with text a piece of code [16].

Code representation. Code data can be treated by models in
different ways. In the case of token sequences as in NLP,
self-supervised representation learning can be tailored for code
data, such as CODEBERT [12], CODEX [65], and PLBART [66].
Instead, CONTRACODE [67] builds representations of program
functionalities by learning from contrastive samples [68].

Also, it is common first to parse the code into tree or graph
structures also to catch the semantics. ASTNN [69] splits each
AST into a sequence of small trees for better representations.
MRNCS [70] recaps serialization schemes on tree structures and
categorized them into sampling-based [71], and traversal-based
ones [72]. TDLS [73] uses GGNN [74] to learn both syntactic and
semantic information. Instead, DYPRO [75] and LIGER [76] learn
program representations through dynamic executions, from the
mixture of symbolic and concrete execution traces. Zhang et
al. [77] addressed the problem of code representation using a
multi-language setting to create an embedding that separates the
semantic from the context of the source code. FLOW2VEC [78] is
an embedding approach that preserves interprocedural program
dependence by approximating the high-order proximity.

Even though we use programming languages encoders
in our work, our approach uses code snippets that are hardly
parsable, i.e., the construction of an AST is not possible. As
explained in Section 3, our approach is token-based.

6.2 Code Search

The code search problem aims at measuring the semantic
relation between a text and source code [56], [34]. In the
following, we describe the literature work that uses machine
learning to address the problem.

Code search using non-Transformer models. Allamanis et al. [79]
learn bimodal representations of source code and natural
language and apply them to code search. Iyer et al. [16] extend
the work of Allamanis et al. by training a Long Short-Term
Memory (LSTM) neural network with attention and applying
it to code summarization, i.e., generating natural language
descriptions from code snippets. Ye et al. [1] learn token
embeddings based on the Skip-gram model by Mikolov et
al. [21]. They evaluate their embeddings on two code search
tasks: bug localization, i.e., given a bug report, find affected
source code files, and Application Program Interface (API)
recommendation for STACKOVERFLOW questions.

Sachdev et al. [80] derive a purely token-based approach
to code search. They use the FASTTEXT algorithm [81] to
learn embeddings for source code tokens. Then, they use these
embeddings to encode both the source code and the search query.
Wan et al. [82] combine multiple source code representations:
source code tokens, ASTs, and control flow graphs. By using
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attention, they hypothesize that the neural network will
automatically select the most valuable features from the different
representations. Finally, Gu et al. [5] propose DEEPCS, a neural
network-based approach that uses two independent LSTM
models for the representation of code snippets and queries.
DEEPCS can compute the vector representations for both the
query and code, then use a similarity function to find the best
match. In our work, we chose DEEPCS as the representative
state-of-the-art neural model for code search (Section 4.4).

Code search using transformers. Husain et al. [34] build a range
of neural network models and compare their performance on
the code search task. One of their models is the BERT-based self-
attention model. They train and evaluate their models on pairs
of docstring-code pairs mined from open-source repositories
on GITHUB. Even without pre-training, the self-attention
model shows good results when trained and evaluated on the
same dataset. They also evaluate their models on a manually
annotated dataset. Our work closely resembles that of Husain et
al., as we use the same multimodal embedding architecture (see
Section 2.1). The main difference with their approach is that we
pre-train the encoders before applying them to code search, i.e.,
we use the concept of transfer learning. Furthermore, while we
also use GITHUB data for pre-training, we fine-tune and evaluate
our model on STACKOVERFLOW data, which we believe better
approximates code search than docstring-code pairs.

Feng et al. [12] build on the work of Husain et al., but instead
of using cosine similarity between the outputs of two separate
encoders, they concatenate the query and code sequence, feed
it to a single encoder, and measure the similarity between
query and code snippet by using a summarizing token in
the output sequence. While using a single encoder reduces
model complexity, our two-encoder architecture offers more
flexibility by allowing various combinations of pre-trained
natural language and source code models. Moreover, we are
interested in anatomically analyzing the impact of pre-trained
modalities; therefore, we need to treat the encoders separately.

Shuai et al. [6] employ a similar architecture to ours, which
they call CARLCS-CNN. It uses the co-attention method to
build the semantic relationship between code snippets and
related queries. Similarly, Fang et al. [83] proposed SAN-CS,
which is solely based on the self-attention method to achieve the
same purpose. While transfer learning would also be possible
with their architecture, it is not discussed in their work. Their
work also differs from ours in that they use docstrings as query
proxies while we use STACKOVERFLOW question titles. Even
though docstrings are commonly used as code search queries,
we believe that STACKOVERFLOW question titles are a better
approximation to real-world queries.

Although CARLCS-CNN [83] and SAN-CS [6] claimed
better performance, they bring additional restrictions to the
compatibility with our experiments. Both CARLCS-CNN [83]
and SAN-CS [6] introduce the co-attention mechanism to refine
the code and query representations. Other than generating the
independent vector representations for the code snippet and
query, they compute a joint attention representation, aiming
to catch the semantic information and the semantic relation be-
tween the two parts. During the prediction phase, i.e., the search,
the approaches (1) compute the independent representations for
all the queries and code snippets, (2) compute the pairwise joint
representations between all the possible queries and snippets,



(3) for each query, select the best matching code snippet. This
mechanism is better suitable for a non-blind code search problem,
i.e., the sets of queries and code snippets are known a priori,
and the approach is asked to find the correct matching pairs.
Instead, we are interested in a blind search that better simulates
an arbitrary input of a user: the user writes their query, and the
approach looks for the best match in the entire code base. It is
the main reason why we compare with DEEPCS [5].

7 CONCLUSIONS AND FUTURE WORK

We demonstrated that transfer learning is an effective method for
improving code search performance of neural networks. The im-
pact of transfer learning is particularly noticeable in cases where
limited training data is available. Because many code intelligence
problems are limited by the size of the training dataset and that
large code corpora can easily be obtained from open source plat-
forms such as GITHUB, we advocate that transfer learning can
lead to improvements also for other source code analysis tasks.

We showed that state-of-the-art sequence-to-sequence
models such as BERT that were initially designed for NLP tasks
can successfully be applied to problems dealing with source
code data. However, due to many parameters of such models,
they require extensive amounts of pre-training and fine-tuning
data. In cases where both these training sets are small, a LUCENE
model achieves similar or better results in code search. However,
we demonstrated that the combined use of an information
retrieval approach, i.e.,, LUCENE, followed by a pre-trained
MEM on a filtered amount of search candidates, brings the best
performance in terms of MRR and Aroma score values.

Moreover, we found some evidence that BERT, while being
effective at modeling long sequences with hundreds of tokens,
may be limited in modeling concise ones (fewer than 10 tokens).
As search queries tend to be short, this might be a limiting factor
of BERT when applied to code search.

Despite these findings, there are still open questions to
address in the future. Our code encoder treats source code the
same as natural language, namely as a sequence of tokens. While
we have demonstrated that such a token-based model can yield
good results on code search, we expect it to perform even better
if the model uses the highly structured nature of source code.
It can be achieved, for example, by replacing or augmenting
the token-based input to the code encoder with input features
representing the structural information of source code, e.g., ASTs.

Moreovert, other preprocessing operations might be applied
to optimize the performance of the presented models, e.g., using
formatters to normalize the code before processing it. In the
case of pre-training on multiple programming languages, we
intend to investigate the use of specific optimizations like the
cross-lingual language model pre-training [84].

Finally, it would be insightful to inspect BERT’s attention
heads when processing source code similarly to natural
language, for which it has been shown that the attention heads
focus on specific language constructs, e.g., verbs and their
objects [20]. Such understanding of the model’s inner workings
can drive the development of better model architectures for
code search and other source code analysis tasks.
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