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a b s t r a c t

Scalability issuesmight prevent Genetic Algorithms frombeing applied to realworld problems. Exploiting
parallelisation in the cloud might be an affordable approach to getting time efficient solutions that
benefit of the appealing features of scalability, resource discovery, reliability, fault-tolerance and cost-
effectiveness. Nevertheless, parallel computation is very prone to cause considerable overhead for
communication. Also, making Genetic Algorithms distributed in an on-demand fashion is not trivial.
Aiming at keeping under control the communication cost and, at the same time, supporting developers in
the construction and deployment of parallel Genetic Algorithms, we designed and implemented a novel
approach to distribute Genetic Algorithms in the form of a cloud-based application. It is based on the
master/slave model, exploiting software containers, their cloud orchestration and message queues. We
also devised a conceptual workflow covering each cloud Genetic Algorithms distribution phase, from
resources allocation to actual deployment and execution, in an engineered fashion. Then, the application
performance has been evaluated using a benchmark problem. According to the performance and setup
times results, it emerged that the cloud can be considered a compellingway of scaling Genetic Algorithms
and an excellent alternative to other technologies strictly related to the physically owned hardware.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

GAs are a powerful technique used in many different fields to
search for a near-optimal solutionwhen searching for the optimum
is too expensive. Although attractive and elegant in the laboratory,
scalability issues prevent GAs from being effectively applied to real
world problems [1]. However, parallelisation may be a suitable
way to improve the computational time and the effectiveness in
the exploration of the search space. Indeed, GAs are ‘naturally
parallelisable’, for instance, their population-based characteristics
allow us to evaluate in a parallel way the fitness of each indi-
vidual, i.e., the ‘global parallelisation model’, also known as the
‘master/slave model’ [2].

It is argued that a barrier to the wider application of parallel
execution has been the high cost of parallel architectures and
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infrastructures and their management. GAs have been effectively
parallelised on multi-core (i.e., CPUs) and many-core (i.e., GPUs)
systems [3,4]. However, these solutions are often expensive and
may obtain only a certain degree of parallelisation being strictly
related to the number of multiple computational units available
on the hardware. On the contrary, technologies based on network
communication may hypothetically be scaled without limits, e.g.,
grid computing [5,6]. Cloud computing can represent an affordable
solution to address the above issues because it breaks the barrier
between employed resources and costs: in a short time, it is pos-
sible to allocate a cluster of the desired size without investing in
expensive local hardware and its management [7,8].

Previous proposals for distributed GAs in the cloud exploited
well-known technologies such as Hadoop MapReduce [9–12],
some of them also providing framework/libraries [9,10,13,14] to
support developers in building distributed GAs. Even though
Hadoop offers some appealing features, the data exchange through
a distributed file system may slow down the execution of parallel
GAs [11,12]. Moreover, it is required to have dedicate skills for
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setup and maintenance activities, which often cannot be automa-
tised, to have a fully operational cluster.

Based on these considerations, in this paper we present
AMQPGA, a novel approach to distributing GAs, implementing
a Cloud-Based Application (CBA) [15] based on the master/slave
model and exploiting technologies especially devised for the cloud
(i.e., Docker, CoreOS and RabbitMQ) to fully take advantage of
the appealing features of orchestration [16], resource discovery,
fault-tolerance, scalability and performance optimisation. It also
allows GAs developers to use existing implementations of genetic
operators or external tools, without constraints on the adopted
programming languages. Indeed, ‘software containers’ (i.e., Docker
containers) provide isolated environments (i.e., virtual Linux in-
stances)where developers can include everything is needed for the
computation [17]. We propose a conceptual workflow to support
the development, deployment and execution of distributed GAs,
exploiting modern software engineering methodologies and tools,
e.g., Continuous Integration (CI) and Continuous Deployment (CD),
aiming at reducing the human effort. Moreover, by means of
the employed technologies, we made the application surpass the
limitations of the number of machines the cloud providers usually
impose upon their users, through an infrastructure definable as
‘multi-cloud’, i.e., based on the allocation of instances by different
cloud providers but participating in the same application [18].

The main contributions of this paper can be summarised as
follows:

• a conceptualworkflowdescribing the phases of development,
deployment and execution of distributed GAs, using modern
software engineering methodologies and tools;
• an approach to deploy containers of distributed GAs appli-

cations in cloud environments, by implementing the mas-
ter/slave model and exploiting message queues;
• an empirical study to assess the effectiveness of our applica-

tion measuring the execution time, speedup, overhead and
setup time;
• a comparisonwith the state-of-the-art approaches, highlight-

ing the pros and cons.

The source code is shared at the address https://github.com/
pasqualesalza/amqpga under the terms of theMIT License.

The rest of the paper is organised as follows. Section 3 describes
some relevant related work. In Section 2 we motivate the need of
applying software engineering methodologies to GAs, illustrating
the conceptual workflowwe devised for the development, deploy-
ment and execution of GAs in cloud environments. In Section 4 we
summarise the main features of the employed cloud technologies
whereas in Section 5 we present the proposed approach. Section
6 and Section 7 report, respectively, the design and the results
of the empirical study we carried out to assess the effectiveness
of the proposed approach. In Section 8 we compare the AMQPGA
approach with the-state-of-art tools for GA parallelisation. Section
9 concludes with some final remarks and future work.

2. Genetic algorithms engineering

GAs have been applied to many fields [19,20]. They revealed
themselves to be effective in particular when the problem to solve
is computationally challenging. Instead of using traditional meth-
ods, the problem can be solved starting from the solutions, i.e.,
the individuals, to which several genetic operators are applied
generation by generation, aiming at improving the quality of the
entire population. The heart of GAs is the fitness function, which
allows evaluating, discriminating and classifying the individuals.
Therefore, obtaining a better solution means optimising the fit-
ness function values. Even though GAs, as any Search-Based algo-
rithms, are already used to considerably reduce the time required

to obtain a proper solution to a problem compared to traditional
methods, the fitness function and other operators can be very
time-consuming components for the whole computation. For this
reason, parallelisation can be used as away to reduce the execution
time. However, the GA requires to be explicitly adapted to be par-
allelised [14]. Thus, GAs might result in being a complex software
system to implement, both in terms of systematic development,
deployment and execution, which in the case of this paper exploits
the cloud.

In this section,we first describe theworkflowmodelwe devised
to engineer a GA, i.e., transforming the GA into a Cloud-Based
Application (CBA) [15]. We involve modern software engineering
methodologies and tools, allowing the programmers to develop
GAs without any technological limits, motivating the use of soft-
ware containers. Then, we discuss the possibility of connecting the
systematic development process to automatic deployment, using
the cloud as a ready to go, crowdfundable and parallel platform.

2.1. Develop a genetic algorithm

Develop a GA consists of two main key ingredients [19,21,22]:
1. choose a representation of the problem; 2. define the genetic
operators.

First of all, the problem has to be expressed in terms of its
solutions, called ‘individuals’ in this context. In order to be treated,
every individual has to be encoded with a gene representation. For
instance, let us assume to want to solve the ‘Knapsack problem’,
where the aim is to optimise the selection of items, each having
a specific size and value, for a knapsack with a limited capacity.
A solution to the problem is then any possible selection of items.
The best solution is one where the total value of the knapsack is
the maximum obtainable. A possible representation is a binary
encoding for which each bit in a string says if a corresponding
indexed item will be included in the knapsack.

Once defined the encoding, it is needed to define the genetic
operators. Some of them are generic and can be easily applied
to any problem, e.g., selection. Others have to be adapted to the
specific problem since they work accordingly to determined rep-
resentations, and their behaviour may cause the production of
inconsistent solutions. In particular, the ‘fitness evaluation’ func-
tion characterises the problem. It allows evaluating how much
an individual fits the problem by associating a value, i.e., single-
objective fitness function, or multiple values, i.e., multi-objective
function. The associated values must belong to a partially ordered
set (‘poset’), thus being comparable and sortable, e.g., real num-
bers, letting determine if an individual is better than another. Then,
other genetic operators can be applied.

Except for the characteristics above mentioned, many of the
required components can be repeated to be used to solve different
problems. For this reason, many frameworks and libraries for GAs
are available [23–26]. They provide ready to use utilities that only
need to be customised, let developers focus on the adaptation
of the problem. Besides some effort can be saved by using these
utilities, GAs are not different from other kinds of software in
terms of development. They can consist of complex pieces of code,
which might be developed by different programmers, tested and
maintained over time.

Fig. 1 depicts a conceptual workflow we devised for a possi-
ble real world scenario in which the development, deployment
and execution of distributed GAs are performed in an engineered
fashion. Here we analyse the workflow from the perspective of
the developer. The developer programs his/her GA and, to be sure
to keep track of the changes in the source code, can exploit the
power of Version Control Systems (VCSs). VCSs, e.g., Git, Subversion,
are software tools that help developers to back up the source
code, allowing collaboration [27]. Besides keeping a local copy,
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Fig. 1. GAs development, deployment and execution workflow.

developers can share a remote repository for source code where
the changes are propagated to the whole team. From the point of
view of GAs developers, it lets follow the evolution of the GA soft-
ware over time, allowing to revert to previous versions if needed.
Moreover, multiple developers can collaborate simultaneously in
the definition of the problem in terms of encoding and genetic op-
erators. VCSs are also a perfect way to distribute knowledge since
it is possible to make available the source code on public remote
repositories, where potentially any researcher can collaborate.

In Fig. 1.a.1, the developer uploads, i.e., pushes, the source code
on a remote repository. To maintain GAs, a developer cannot leave
out from consideration a test phase. Not only does s/he need to test
single genetic operators, but also the entire GA might require to
be executed against a test suite. Being GAs very time-consuming,
Continuous Integration (CI) tools are particularly indicated. CI is the
practice of frequently integrate shared code in a common repos-
itory [28]. Each integration is verified by executing automated
testing. There exist several CI platforms that can be automatically
remotely triggered (Fig. 1.a.2) as soon as a new version of the code
is available on a VCS repository. They usually reproduce a proper
environment for the test suite, perform the test execution and
collect reports for the developers. The sets of operations can be
run independently of the development activity, even on a remote
machine.

2.2. Deploy and execute a genetic algorithm

As mentioned before, the fitness evaluation function is the core
part of GAs and it usually the most time-consuming component
of the whole execution. Cloud computing can be a good option
to parallelise GAs, both in terms of efficiency and cost [8]. It is
not needed to own any physical infrastructure since computation
can be purchased as a service from cloud providers, in the form
of virtual instances, for the desired time, quantity and quality. It
offers the ‘scalability’ feature, i.e., the capability of enlarging the
number of computational units on demand. Moreover, it includes
many mechanisms to guarantee fault tolerance in case of physical
and logical failures.

Recently, the architecture of containers is becoming a standard
way to distribute applications easily over the cloud. Differently
from the traditional hypervisor-based virtualisation, software con-
tainers share the common resources of the underlying hardware
or virtual instance and Linux kernel, without impacting on perfor-
mance. Related to GAs, not only can software containers improve
execution by parallelising them, but also they can be exploited to
define an ad hoc environment. Often, the fitness function consists
of the execution of a particular and time-consuming external pro-
gram with which the GA may need to interact. With containers,

the developer can define both the environment for the execution
of genetic operators and any required external tools.

Several important companies widely make use of native plat-
forms to manage containers on their infrastructures, e.g., CoreOS,
Docker Swarm, Kubernetes. Thousands of containers are spread
over their hardware to balance the computational load and guaran-
tee reliability. These platforms give the feeling of having multiple
resources as a single pool of computational power. The users can
submit a task, e.g., the execution of a container, and the platforms
will automatically manage which resources using. The resource
does not even need to belong to the same geographical place
or cloud provider, i.e., ‘multi-cloud’ [18], since several resources
can be aggregated to the same cluster by running the same plat-
form. It also opens to the concept of ‘crowdfunding’, for which
multiple users contribute by sharing some machine they have
commissioned from their own account with their cloud provider.
In particular, we exploited CoreOS to this purpose for the proposed
implementation (see Section 4.3).

We refer again to Fig. 1, this time from the perspective of the
end userwho intends to run a parallel GA in the cloud. The end user
might or not coincide with the original developer. Let us suppose
that a GA is available on a Git source code repository. Besides
allowing automatic testing, CI tools also allow to build software
automatically. Once the CI process has been triggered (Fig. 1.a.2),
the activity of the building can be performed. As for the GAs, it
corresponds to the preparation of the environment, compiling the
source code and packaging it in the form of a container image (see
Section 4.2). This binary representation is then stored on a pri-
vate or public repository (Fig. 1.a.3), which is therefore reachable
from the outside, ready to be downloaded and executed on local
machines and in the cloud. This process is commonly known as
Continuous Deployment (CD), where the software is deployed or
released as soon as it is ready [29].

At this point, the end user may decide to run the container
on his/her laptop machine or in the cloud. First, s/he requests
for virtual machine instances to a cloud provider (Fig. 1.b.1). The
next step is to allocate a platform to manage containers, e.g.,
CoreOS (see Section 4.3) (Fig. 1.b.2). Once configured and invoked
(Fig. 1.b.3), the orchestrator can start to perform (Fig. 1.b.4): 1.
the download of the most updated version of the GA container
image, 2. the scheduling, i.e., orchestration, of containers in the
cloud cluster. Cloud orchestration platforms manage everything
concerned networking, in particular, the ‘discovery’ of resources.
It is not needed to know a priori which are the Internet Protocol (IP)
addresses of containers in the cloud, but they collect this dynamic
information in a distributed storage that is accessible from any
point of the network. Moreover, usually they use names instead
of IP addresses, using a Domain Name System (DNS) that translates
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to physical locations. Also, it allows hiding under the same name
multiple instances of the same service. In this way, a load balancer
can decide which resource is less busy to accept a new request. Of
course, even if very powerful, this capability needs to be specif-
ically designed for the developed CBA. Regarding the scalability,
this allows adding an undetermined number of resources to the
computation, as in the case of the proposed CBA for GAs.

Therefore, the parallel GA can be finally executed. How the
several containers interact is addressed in the next section, in
which the application we devised is proposed.

3. Related work

A wide range of work is present in the literature about models
and technologies for GAs parallelisation [2]. However, our work
aims to parallelise GAs on a commercial cloud environment. Thus,
we only report themost relevantwork involvingmodels, technolo-
gies, problems and conceptual deployment workflows in the GAs
or Evolutionary Algorithms (EAs) fields.

Zheng et al. compared the multi-core (i.e., CPUs) and the many-
core (i.e., GPUs) systems for GAs parallelisation [3]. Firstly, they
found that the system based on GPUs is faster than the CPUs one.
However, they observed that an architecture with a fixed number
of parallel participants, such as GPU cores, might performworse in
terms of quality of solutions than anotherwithmore parallel nodes
stating that distributed architectures, e.g., the cloud, are worth for
GAs parallelisation.

Many authors used the MapReduce paradigm to implement
parallel GAs [30,31] and some of them with Hadoop MapReduce
in particular [11,12]. On the one hand, they claimed that GAs can
efficiently scale onmultiple Hadoop nodes. On the other hand, they
highlighted the worrying presence of overhead, due to the com-
munication with the data store, i.e., Hadoop Distributed File System
(HDFS), suggesting their use onlywith large populations and inten-
sive computation work for fitness evaluation. In general, Hadoop
MapReduce represents one of the most mature and employed
technologies to develop parallel algorithms since it provides a
ready to use distributed infrastructure that is scalable, reliable
and fault-tolerant [32]. Nevertheless, it requires high performance
from the underlying hardware. Moreover, the scalability of the
infrastructure is possible, but it requires a considerable amount of
time before a new node becomes available and it is not suitable
for all since specific skills for setup and maintenance activities are
needed. Instead, other cloud technologies are affordable, and the
scalability and fault-tolerance features can be obtained from the
design of the distributed applications themselves.

Another aspect that is strictly connected to our work is the
preservation of the metaheuristic nature of GAs, thus allowing
the system to be adapted to a wide variety of problems. Even
though being related to the EAs in general, the first attempt of
generalisation was given from Fazenda et al. [13], who considered
the parallelisation of EAs on the Hadoop MapReduce platform in
a general purpose form of a library. The work has been further
enhanced by Veeramachaneni et al. to produce FlexGP [33], which
is probably the first large-scale Genetic Programming system that
runs in the cloud, implemented over Amazon EC2 with a socket-
based client/server architecture. To the same aim, Ferrucci et al. [9,
10,14,34] devised and implemented the elephant56 framework
for parallel GAs development, deployment and execution on the
Hadoop MapReduce platform, based on the three models of GAs
parallelisation (i.e., the global, grid and island model). They de-
scribed the design of the framework and how a developer could in-
teract in defining his/her genetic operators or using some provided
samples. We addressed this aspect by using software containers
that allow defining any environment for GAs execution.

With cloud computing is possible to address almost any prob-
lem, by mixing a large variety of technologies. Moreover, some

software engineering methodologies are particularly effective in
the cloud field, possibly easing the production of parallel GAs (see
Section 2). As a first attempt at employing cloud technologies,
Merelo Guervós et al. devised SofEA [35], a model for Pool-based
EAs in the cloud, an evolutionary algorithm mapped to a central
CouchDB object store. SofEA provides an asynchronous and dis-
tributed system for individuals evaluations and genetic operators
application. Later, they defined and implemented the EvoSpace
Model [36], consisting of two components: a repository storing
the evolving population and some remote workers, which execute
the actual evolutionary process. It is the first work to involve
technologies on the Platform-as-a-Service (PaaS) and Software-as-
a-Service (SaaS) level: Heroku as PaaS for the population store and
PiCloud as SaaS for the computing operations. Not only does the
work show how EAs can scale on the cloud, but also how the cloud
can make EAs effective in a real world environment, speeding up
the running time and lowering the costs.

This paper investigates how GAs can effectively take advantage
of the cloud to speed up their execution.

4. Background

In this section, we give some background about the involved
technologies and communication protocols. The container-based
virtualisation and its related most famous utility, i.e., Docker, are
presented, respectively, in Sections 4.1 and 4.2. Section 4.3 de-
scribes CoreOS, the technology of containers distributed orches-
tration we employed whereas Section 4.4 illustrates the Advanced
Message Queueing Protocol (AMQP) we used for communication
together with its most famous implementation, i.e., RabbitMQ.

4.1. Container-based virtualisation

The basic idea behind the classic hypervisor-based virtualisation
is to emulate the underlying physical hardware, creating a new
virtual one and installing a fully working Operating System (OS) on
it. It is the typical model adopted by cloud providers, because of its
ability to make hardware shareable and easily maintainable. Even
though there are many existent techniques to optimise resources
sharing (e.g., the bare metal virtualisation), the hypervisor-based
virtualisation can be considered as limited in terms of perfor-
mance. It is true especially when the aim is to execute cloud
applications, where several service instances may require to be
created and destroyed in seconds to guarantee the reliability and
scalability of the entire system.

While with the hypervisor-based virtualisation everything is
performed on the hardware level, the container-based virtualisation
operates at the OS level. It provides a lightweight virtual envi-
ronment, i.e., the software container, that groups and isolates a
set of processes and hardware resources from the host and any
other container. The main difference with the hypervisor-based
virtualisation consists in the fact that all containers share the same
kernel of the host system, instead of virtualising it, resulting in a
high-performance resource utilisation. For this reason, containers
are also much smaller and lightweight compared to an entire vir-
tualised OS [17]. With the isolation, a process inside the container
cannot directly see a process or resource outside the container
itself, and the network is the only vehicle for communication.

Containers and its features are not such a new technology.
Indeed, it was 1979 when it was made possible, for the first time,
to create a new root filesystem inside an existing one, using a
feature named ‘chroot’. This isolation feature was then evolved
into the Linux ‘namespaces’ technology that not only does it offer
the isolation of the filesystem, but also of other system resources
such as network interfaces. In this way, processes can run in an
environment where the resources appear to be dedicated to them.
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The term ‘process container’ was first used around late 2006, then
renamed to ‘control groups’ (abbreviated as ‘cgroups’) in 2007, as
a Linux kernel feature available since v2.6.24. While namespaces
isolates processes, cgroups lets the user limit the hardware re-
sources for them. The combination of namespaces and cgroups is
the basis of the modern Linux Containers (LXC) on which Docker
was built on1 and that Docker simplifies, especially when the aim
is to containerise applications.

4.2. Docker

Docker is an open source container orchestration engine that
separates applications from the underlying Linux OS. With Docker
it is possible tomanage software containers, which are intended to
contain every component of an application. From the application
perspective, there is no difference between an execution on a
dedicated machine and inside the container: the application is run
in a short time in a full isolated Linux environment and can find
others only byusing thenetwork. This reduces drastically the activ-
ities of installation andmaintenance of applications: configuration
management methodologies can define the environments and the
application can be tested during the process from development
to actual production execution, in a CI fashion (see Section 2.1).
Docker creates containers from the ‘images’, i.e., basically read-
only templates. Docker also provides an on line registry called
‘Docker Hub’ where it is possible to push/pull images to/from it.
Docker images and registry allow to instantiate containerswithout
repeating installation and build operations. The images can be cre-
ated through two different operations: 1. by executing operations
directly on running containers and saving their state; 2. by execut-
ing ‘Dockerfiles’, a set of instructions which can be maintained in
the sameway as the source code. Docker is not the only alternative
in the field of containers management (e.g., runC, and rkt), but it is
currently the most mature product.

4.3. CoreOS

If Docker orchestrates containers in a single hosting machine,
CoreOS can do it on a distributed cluster [16]. CoreOS is an open
source lightweight OS based on a build of Chrome OS by Google. It
allows building large and scalable deployments on varied infras-
tructure simple to manage, focusing on security, consistency and
reliability. CoreOS provides only minimal functionalities required
to execute applications inside Docker containers.2

Fig. 2 shows an instance of execution of our application on
CoreOS. To manage the cluster, CoreOS exploits a globally dis-
tributed key–value store called ‘etcd’. Not only does it allow the
CoreOS cluster configuration, but also it can be exploited by users
as a central point for automatic applications configuration and
discovery of other components in the network. The scheduling
of containers is managed by a tool called ‘fleet’ that serves as a
cluster-aware init system. It extends on a cluster scale systemd, the
modern single machine Linux init system. It accepts the requests
of containers allocation and schedules assignments to machines
in the cluster on an optimisation basis, probing both cluster and
applications health.

A new computational resource can join the cluster if a security
key is configured. The only requirement is to run CoreOS as OS.
Also, CoreOS allows to run an application in a multi-cloud envi-
ronment [18]. Indeed, even if running on different machines that
are geographically distant, CoreOS let them be seen as a single
environment on which Docker containers can be deployed and
executed. Itmeans that is possible to use at the same time instances

1 Since version 0.9, Docker uses the ‘libcontainer’ library.
2 Currently, CoreOS is developing its own container called ‘rkt’.

Fig. 2. CoreOS containers distribution.

from different cloud providers, surpassing the limitations of the
number ofmachines the cloud providers usually impose upon their
users.

We preferred to use CoreOS over other alternatives (e.g., Docker
Swarm, Kubernetes, Mesos) because they are at the same time
lightweight regarding the resource allocation and complete of
everything we needed to realise our application. Moreover, it is
also available as a cloud instance image on the majority of public
cloud providers and thus avoiding the ‘lock in’ to specific services.

4.4. AMQP and RabbitMQ

RabbitMQ is an open source ‘message broker’ software that
implements the Advanced Message Queueing Protocol (AMQP). It
is written in Erlang language and client libraries are available for
the majority of programming languages. It is a component able to
accept and forwardmessages, which can consist of either plain text
or blobs of binary data. Message brokers cover each stage of the
exchange setup among participants, namely the ‘publishers’ and
‘consumers’. The publishers produce messages and the consumers
pick and process them. It is the job of themessage broker to ensure
that themessages go from a publisher to the right consumer, based
on a chosen scheduling policy. The primary recipient of messages
is the ‘queue’, a potentially unlimited buffer of data, which lives
inside RabbitMQ. If the publisher and consumers are connected to
a queue, they can communicate with each other without actually
knowing each other. It makes RabbitMQ a powerful tool for scal-
able distribution of tasks since it is possible to add and remove
participants without breaking the communication.

RabbitMQ has other contestants regarding the AMQP imple-
mentation, but no one has, at the same time, a message broker,
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High Availability (HA) capabilities,many client and developer tools
available for themajority of programming languages, besides being
easily deployable as Docker containers. Furthermore, differently
from other communication technologies, RabbitMQ can easily sus-
tain a distributed infrastructure without requiring any other dis-
covery technology.

5. The proposed cloud-based application

In this section,wepresent the design and implementation of the
approachwe devised to parallelise GAs in the cloud as a CBA,which
we then used as a benchmark for the experimentation described in
Section 6.We refer to the development, deployment and execution
workflow presented in Section 2, covering each of the expected
phases.

We implemented the parallel GA as a distributed algorithm
based on containers, following the global parallelisation model
(also known as the master/slave model) where a master node
executes the GA generations on the whole population except for
the fitness evaluation, which is demanded to distributed slave
nodes. We named this implementation as AMQPGA.

Since we needed other utility components, we structured the
application in microservices [37] using separate containers, de-
coupling functionalities and exploiting existing and more reliable
services for communication and report activities. We involved
a total of 4 types of services: 1. AMQPGA master, to manage
the computation of the whole parallel GA; 2. AMQPGA slave, to
compute the fitness evaluation function in parallel for the dis-
tributed individuals; 3. RabbitMQ, as the communication protocol
and technology; 4. MongoDB, as the recipient of report data for
benchmarking and statistics.

In the following, we first describe the design of the architecture
of the parallel GA as a CBA in Section 5.1. Once given an overview
of the whole application, in Section 5.2 we describe the communi-
cation protocol based on AMQP and RabbitMQ. Finally, we describe
the algorithms for themaster and slaves of AMQPGA in Section 5.3.

5.1. Architecture design

We describe the architecture of the CBAwe devised for the par-
allel GA, including all the specific cloud components and processes
indicated in Section 2.

Fig. 3 shows the ensemble of the involved components. The
base layer is composed of the cloud infrastructure able to allocate
virtual instances of CoreOS, which has been chosen as the cluster
manager.With the aim of providing an application asmore general
and flexible as possible, we can consider indifferently commercial
cloud providers (e.g., DigitalOcean, Amazon AWS, Windows Azure)
and private cloud environments (e.g., OpenStack). It is possible
since the only requirement for clusterisation is the availability of
the CoreOS image, thus breaking the limits in number and resource
usage that single providersmay impose on the users.We employed
both themain services of CoreOS: fleet as the deploymentmanager
and etcd as the central configuration point for discovery purposes.

Asmentioned in Sections 4.2 and 4.3,while CoreOSmanages the
machines in the cluster and scheduling aspects, Docker manages
the download of containers and their execution on the machines
assigned by CoreOS. The powerful feature of Docker of executing
an entire environment makes possible the implementation of any
genetic operator, in any preferred programming language or using
any external tool.

The application services of our proposal exploit the underlying
interfaces of CoreOS andDocker. One is a running container of Rab-
bitMQ, and the other is the GA cloud implementation, which we
named AMQPGA, running in the form of one master and multiple
slave containers, communicating through the RabbitMQ service.

Fig. 3. The involved architecture layers.

Fig. 4. The AMQPGA algorithm.

Fig. 2 depicts the above situation on the cluster, where CoreOS
schedules all the containers to optimise the resources load of the
execution.

Regarding the development, deployment and execution work-
flow described in Section 2, we put our a source code on a Git
VCS repository. We also implemented a test suite to test the GA
components, e.g., the fitness functions. Then, we embedded every-
thing in a software container defining a Dockerfile, that prepares
a lightweight environment for the source code execution. We put
the resulting Docker image on a public Docker registry, making it
available for download. As described in Section 6, we organised
the deployment of AMQPGA in the CoreOS cluster in the form of
simple scripts that interact with the CoreOS orchestrator, allowing
automatic download of AMQPGA image from Docker registry and
allocation on cloud resources.

It is worth noting that the indicated services do not require
to be embedded in a CBA because they do not strictly require
a cloud platform to be executed. Indeed, Docker containers can
be executed on any platform having a running Docker engine,
allowing independent CI operations.

5.2. AMQP as the communication protocol

We adapted the global model to AMQP model, implemented
with a combination of Goworkers and a running RabbitMQ service.

The resulting algorithm is an application of the Remote Proce-
dure Call (RPC) pattern, depicted in Fig. 4: 1. the AMQPGA master
node publishes the messages (i.e., the individuals) on the request
queue; 2. RabbitMQ dispatches the individuals to the subscribed
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slave nodes, in a round-robin fashion (i.e., assignments are made
in equal portions and circular order); 3. the AMQPGA slave nodes
process the individuals by computing the fitness function values
and publish them on the response queue; 4. the only consumer
of the response queue, i.e., the AMQPGA master node, takes back
all the individuals and continues the computation until the next
generation. Using the message broker as the central point for the
computation, we were able to add any number of further slave
nodes to the GA, even at runtime, making the application scalable.
In terms of discovery, we used the specific name of ‘rabbitmq’ for
the service container executing RabbitMQ. In this way, the master
and slave nodes only have to reach that node to be part of the
distributed computation.

5.3. Parallel genetic algorithm master and slaves

For the implementation, we choseGo, an open-source program-
ming language by Google. In our case, Go was used to simplify
the GA processes and build small containerised environments. It
is worth noting that it would be possible to switch the Go clients
with clients developed with any programming language. The only
requirements consist in being able of communicating with Rab-
bitMQ, serialising individualswith the same codification algorithm
and respecting the devised communication protocol.

Algorithm 1: The AMQPGA master
1 population← Initialisation(popsize);
2 repeat
3 foreach individual ∈ population do
4 ProduceMessage(individual);
5 population← ConsumeMessages();
6 selectedCouples← Selection(population);
7 foreach parent1, parent2 ∈ selectedCouples do
8 child1, child2← Crossover(parent1, parent2);
9 offspring← offspring ∪ {child1} ∪ {child2};

10 foreach individual ∈ offspring do
11 Mutation(individual);
12 population← SurvivalSelection(population,

offspring);
13 until termination criterion;

Algorithm 1 shows the pseudocode of the AMQPGA master, in
charge of managing the communication with the slaves, which
compute the fitness evaluation, and the execution of the other
genetic operators. It is worth noting that this is just one of the
possible implementations for GAs, since we could have also used
other genetic operators and customised the order of execution.
Moreover, every single operator is generalised since there are
several versions, with different parameters each. However, since
we mainly aimed at demonstrating the correct operation of the
CBA based on software containers and benchmark the parallel GA
with the global parallelisation model, the selection and configura-
tion of operators are irrelevant. Let us suppose to have a specific
representation for the problem to solve, meaning that is possible
to encode the solutions in a data structure, the Initialisation
function in line 1 produces the initial random population. Until
a termination criterion is satisfied, e.g., a specific number of iter-
ations has been reached, the population is evolved through the
application of genetic operators lines 2–13, i.e., a generation. At
every generation, the master encapsulates each individual in a
message that is sent to a queue (ProduceMessage function in
lines 3–4), ready to be consumed and evaluated from the listening
slaves. Then, in line 5 the master collects back all the evaluated
individuals through the ConsumeMessages function. It is worth
noting that the individuals are objects including both the data

representation for the solution and the fitness evaluation value.
Of course, the fitness value will be filled when computed by the
slaves only. Lines 6–12 applies the other genetic operators, i.e.,
Selection, Crossover, Mutation, and SurvivalSelection
functions, in the same process of the master, thus being local in
respect to the parallel GA.

Algorithm 2: The AMQPGA slave
1 while true do
2 individual← ConsumeMessage();
3 individual← FitnessEvaluation(individual);
4 ProduceMessage(individual);

The AMQPGA slave consists of a straightforward algorithm (Al-
gorithm 2). Until the process is not terminated (line 1), it repeat-
edly consumes a new message as soon as a new message is ready
on the queue on which it is listening (ConsumeMessage in line 2).
Then, it applies the FitnessEvaluation function and fills the
fitness value field of the individual in line 3. Each individual is then
sent back to the master as a message, ProduceMessage in line 4.

The way the individuals are distributed between the slaves is
dictated by the configuration of themessage queues and communi-
cation protocol. Moreover, we set a data exchange with MongoDB
to the purpose of collecting experimentation reports.

6. Empirical study design

Our aim was to understand if the proposed approach can be
an effective solution to improve the scalability of GAs. Therefore,
we had to verify if GAs parallelised using cloud technologies allow
us to get a better execution time compared to the sequential
version. Moreover, we were interested in quantifying the setup
time required to have the infrastructure ready to execute the GAs.
Thus, we sought to answer the following research question:

RQ Is the use of AMQPGA based on a combination of software contain-
ers, message queues and cloud orchestration effective for parallel
GAs against the sequential execution?

Considering that the global parallelisation model is parallelised
only during the fitness evaluation, to address theRQwe considered
as a benchmark a dummy fitness evaluation function that does
nothing except receiving individuals, sleep for a specified time and
return a random fitness value to the master [38]. The choice of
this dummy function, together with the variation of the network
load (i.e., the chromosome size), was motivated by the fact that
it allowed us to assess the GAs scalability considering different
problem sizes by just varying the sleep time [5]. Moreover, we
tested the actual time required to have the cloud infrastructure
ready to execute the parallel GAs. It is worth noting that in global
parallelisation model the populations evolve in the same way as
the sequential version. For this reason, we do not mention quality
results.

Details about the problem and GAs configuration are provided
in Section 6.1. The hardware employed to run the experiments is
reported in Section 6.2. To understand the effectiveness of the ap-
proach, we applied the experimental method described in Section
6.3 and employed several evaluation criteria, namely the execution
time, speedup, overhead and setup time, described in Section 6.4.
Finally, Section 6.5 analyses some threats to validity that may have
affected our experimentation and how we tried to alleviate them.
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Table 1
The cloud instances configuration.
Hardware Software

Feature Value Feature Value

Architecture 64bit CoreOS 1185.5.0
CPUs 1 Docker 1.12.3
RAM 512MB RabbitMQ 3.6.6
Storage 20GB Go 1.7

6.1. Experiment configuration

To understand how the application behaves, we focused our
attention only on the fitness evaluation time, since it is the only
parallelisation part of the execution of the global parallelisation
model [38]. Nevertheless, we implemented and executed a full GA
to reproduce a real scenario in which, besides the execution time,
other system resources are consumed, and the GA needs to fit into
provided limits (e.g., the memory). The GA has been configured
following other studies parameters [36,39]. We initialised a popu-
lation of 10 000 individuals to let the problem be large enough and
splittable to multiple slaves. We ran the GA for 10 generations and
varied the chromosome size according to the experimentalmethod
(see Section 6.3).

6.2. Hardware

As execution bench for our experiments, we rent several in-
stances from the DigitalOcean cloud provider. We composed the
cloud clusters employing CoreOS, using 1 instance dedicated to the
master, 1 instance for RabbitMQ and varying the size of instances
in 1, 2, 4, 8, 16, 32, 64 and 128 for the slaves to test the scalability
of the executions. With the aim of maintaining a low budget, we
selected only small instances of virtual machines which consisted
in 1 core processor, 512MB of memory and 20GB of SSD disk
for $0.007h. We made an exception for RabbitMQ node because
it requires at least 1GB of RAM. The configuration of each cloud
instance is summarised in Table 1.

6.3. Experimental method

We addressed the RQ by comparing the performance of the se-
quential and parallel GAs with different configurations. We varied
the sleep time of the employed dummy fitness function of 0.01ms,
0.1ms, 1ms, 10ms and 100ms in order to benchmark different
computational times. The network was stressed by varying the
individual size (i.e., the chromosome size) in 128, 256, 512, 1024,
2048, 4096, 8192, 16 384, 32 768 and 65 536 genes, where each
gene is encoded with 8bit. We were not able to use a larger chro-
mosome size, due to thememory limits of the sequential execution
on a single machine. We executed all the parallel GAs on differ-
ent cluster configurations characterised by a different number of
nodes (see details in Section 6.2). We did not let the master node
participate in any parallel fitness computation because we were
interested in observing the behaviour of peer communication with
RabbitMQ. For each combination of sleep time, chromosome size
and cluster configuration, we executed 10 runs. Considering the
fitness evaluation as the only actual parallel phase, it allowed us
to have a total of 10 generations × 10 runs = 100 executions to
statistically reinforce the observations.

6.4. Evaluation criteria

To compare the performance of the executed experiments, we
mostly followed the best practice in reporting the results with
parallel GAs, identified by Luque and Alba [2]. We evaluated them

both in terms of execution time, speedup and overhead, as detailed
in the following. Moreover, we evaluated the setup times of the
cloud infrastructure. To cope with the stochastic nature of GAs and
hardware executions, we performed some statistical tests.

6.4.1. Execution time
The execution time was measured in milliseconds (ms) using

the system clock. As a performance indicator of the whole execu-
tion, we compared the execution time achieved by executing all
the fitness evaluation phases of sequential and parallel GAs. The
partial times were distinguished into computation and overhead
times only in a second step when we wanted to quantify the time
spent for parallel communication.

6.4.2. Speedup
The speedup is defined as:

S =
TS
TP

(1)

where TS is the sequential execution time and TP the parallel
execution time.

We compared the achieved speedup with respect to the ideal
speedup, which is equal to the number of the involved parallel
nodes and corresponds to the situation when the sequential ex-
ecution time is perfectly split among multiple nodes. The ideal
speedup is rarely achieved in practice due to the presence of
overhead, but it is usually taken into account as an upper limit to
compare the performance of parallel algorithms [2,40].

6.4.3. Overhead
To understand the reasons that prevent the parallel GAs to

have a speedup near to the ideal one, we quantified the overhead
for each execution. We considered the time of each execution
and distinguished between overhead and computation times. We
defined the computation time as:

TC =
TS
P

(2)

where TS is the sequential time to compute the fitness evaluation
function for the whole population and P the number of parallel
slaves. Thus, the overhead time is:

TO = TP − TC (3)

computable if TP , i.e., the parallel execution time, is given.

6.4.4. Setup time
One of the points about our approach we took particularly in

consideration is its feasibility in a real world context. To this aim,
we experimented with the setup time required to have the cloud
infrastructure ready to execute the GAs. We discriminated this
automated activity into two different times:

• ‘creation’, the necessary time to acquire the virtual instances
from the cloud provider and let all the machines be recog-
nised as part of the CoreOS cluster;
• ‘deployment’, the time required to pull the GA and RabbitMQ

images from the Docker Hub repository, schedule and start
the containers on all the machines.

6.4.5. Statistical tests
We executed 10 generations and 10 runs for a total of 100

registered times for each experiment configuration, in order to
copewith the inherent randomness of dynamic execution time and
reported the average results.

To support all the considerations about the obtained results,
we performed the non-parametric inferential statistical test, i.e.,
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the Wilcoxon Signed Rank test [41], as recommended in the litera-
ture [2,20,42]. The Wilcoxon Signed Rank test verifies, as the null
hypothesis, if two considered populations have equal distributions.
It is particularly useful when no assumptions about the normality
of the distributions are possible, as for our case. For all the statisti-
cal tests, we accepted a probability of 5% of committing a Type-I-
Error, i.e., the significance level.

Furthermore, we used the Vargha–Delaney Â12 test for effect
size [43] to characterise themagnitude of difference. The Â12 test is
an estimation of the probability the algorithms have against each
other in obtaining better results of the considered measure. When
two algorithms are compared, and their results are equivalent,
then Â12 = 0.5. Â12 > 0.5 means that, on the average over all
the runs, the first algorithm obtains better results than the one
withwhich is compared. Themagnitude values can be summarised
by 4 nominal values, namely the ‘negligible’, ‘small’, ‘medium’ and
‘large’.

6.5. Threats to validity

Threats to construct validity concern the relationship between
the theory behind the experiments and the observations. In or-
der to alleviate possible threats related to measurement, the GAs
execution time was quantified using the system clock, because it
represents the speed of a technique to the end-user. We could
not make use of any machine independent measure, e.g., the eval-
uations number, since the sequential and master/slave models
behave in the same way.

Threats to internal validity concern any confounding factors
that could influence our results. A possible threat is related to
the randomness due to the use of GAs and variable computa-
tional/network load on the nodes at the time of the experiment. In-
deed, GAs are intrinsically random, and wemitigated such a threat
by executing all the experiments 10 times, with 10 generations
each, and presenting the average results [20,42]. Furthermore, the
nodes may have been biased by the randomness of system events,
and the multiple runs were intended to alleviate these issues as
well.

Threats to external validity concern the generalisability of our
findings outside the scope of our study. An external threat is due to
the fact thatwe benchmarked the parallel GAs on a particular cloud
provider (i.e., DigitalOcean)whosemachines performancemaydif-
fer fromother providers. For this reason,we carefully separated the
times concerning the computation from the setup ones. Moreover,
we considered the results of our study as an analysis of the ‘execu-
tion trends’ instead of absolute values, obtained by proportionally
varying the configuration parameters of the experiments.

7. Results

In this section, we present the results of our study. The compar-
ison between sequential and parallel GAs, with regarding the exe-
cution time, is reported in Section 7.1. The analyses of the speedup
and overhead are reported in Sections 7.2 and 7.3, respectively. The
setup time is analysed in Section 7.4.

7.1. Execution time

Fig. 5 shows the boxplots of the achieved execution times of the
fitness evaluation phase on the whole population, including the
time for the communication. Let us recall that we experimented
with different combinations of the fitness evaluation time for a
single individual (Tf ), i.e., the sleep timeof the dummy function, the
chromosome (c) and cluster sizes (P). Moreover, each generation
employed a total of 1000 individuals. We performed 10 runs of 10

Table 2
The intervals for which the execution time decreases when
increasing the number of parallel nodes.

c Tf = 1 Tf = 10 Tf = 100

Pmin Pmax Pmin Pmax Pmin Pmax

128 2 8 2 32 2 128
256 4 8 2 32 2 128
512 4 8 2 32 2 128

1024 4 8 2 32 2 128
2048 4 8 2 32 2 128
4096 4 8 2 32 2 128
8192 4 8 2 32 2 64

16384 4 8 2 16 2 64
32768 4 8 2 16 2 64
65536 – – 2 16 2 64

generations each, registering a total of 100 observations for each
combination.

As expected, when increasing the chromosome size, the exe-
cution time for the same cluster size and individual fitness time
increases proportionally. Focusing on the execution with 1 slave
node, for which the communication is not affected by the message
broker scheduling policy, we carried out the following statistical
tests. We iteratively compared the distributions of consecutive
chromosome sizes looking for the first thresholdwhere the p-value
of the two-tailed Wilcoxon signed-ranks test was less than the
level of significance of 0.05 (i.e., accepting the alternative hypoth-
esis of equality). To strengthen the differences, we also employed
the Vargha–Delaney test considering as different only the couples
having amagnitude level equal tomedium or large.We noticed that
the execution time starts to be greater than smaller chromosome
sizes only from 2048 genes on, for all the values of the individ-
ual fitness times. Even if the passage through a message queues
communication system, i.e., the RabbitMQ message broker, adds
a certain amount of latency in communication, the chromosome
size variation effect is imperceptible if considering that the time is
reported in the order of seconds. It can be due to the fact that the
network of the employed provider is capable of offering a network
speed much higher than what is needed.

As for the scalability on the number of nodes, as easily visible
from Fig. 5, the application begins to scale from Tf = 1 on.
It is clear that there are some minimum and maximum thresh-
olds of the cluster sizes within the approach scales. To support
this assumption, we performed a statistical test whose results are
shown in Table 2. For each chromosome size and individual fitness
time combination, we looked for the first cluster size observations
group (Pmin) whose distribution was significantly greater than the
sequential execution one. It was obtained by performing a single-
tailed Wilcoxon signed-ranks test setting the level of significance
to 0.05. Then, if a minimum threshold was found, we iteratively
compared the next couples of consecutive cluster size distributions
until the alternative hypothesis by means of the Wilcoxon test
was rejected, meaning that the execution time is not significantly
decreasing anymore. Thus, we marked that point as the maximum
threshold (Pmax). As shown in Table 2, the approach succeeds in
scaling for a few nodes for Tf = 1. It is possible to notice that
increasing the Tf helps the approach to scale, whereas the chro-
mosome size does not.

On the one hand, because of the communication protocol, the
parallel nodes must alternate the phase of receiving, computing
of fitness evaluation function and sending of individuals. For this
reason, the increment of the chromosome size increases the com-
munication time, even forcing the slaves to be idle for a certain
time until the next individuals have been made available from the
master.
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Fig. 5. The execution times achieved by the sequential and parallel GAs, reporting all the combinations for the chromosome size (c), fitness evaluation time (Tf ) and cluster
size.

On the other hand, the increment of the individual fitness time
makes the communication time irrelevant against the computa-
tion one thus splitting more linearly the execution times between
parallel nodes. Except for the cluster with one node (i.e., size of
1), where the resulting execution time is obviously greater, the
clusters with multiple nodes outperform the sequential execution
(i.e., the cluster size of 0). It means that the execution time is
directly proportional to the individual fitness evaluation time and,
aswehoped, inversely proportional to thenumber of cluster nodes.

The effect of the increment of the number of slave nodes is
better discussed in the following, where the speedup is analysed.

7.2. Speedup

The speedup characterises the scalability factor when the num-
ber of slave nodes is increasing against the sequential execution.
The values are shown in Fig. 6, distinguishing the individual fitness
time and the chromosome size. Table 3 reports values on average
of the 100 observations for the most positive case of Tf = 10 and
Tf = 100 from the above analysis. As visible from Fig. 5, the GAs
begin to scale effectively from Tf = 1 on. For Tf = 10 and Tf = 100,
the speedup values tend to the linear speedup according to the
thresholds observed in Section 7.1. The observed values suggest
that an employment of a Tf having at least a certain complexity, in
terms of execution time, is the only requirement thatmakes the GA
based on the master/slave model effectively scalable on multiple
nodes, tending to linear scalability.

7.3. Overhead

To further investigate the behaviour of the parallel executions,
we analysed the execution time on a more fine-grained scale.

Fig. 7 shows the computation and overhead based on the in-
dividual fitness time and chromosome size combinations, where
the overhead is intended as the additional time other than the
computational one, generally due to communication and message
broker (i.e., RabbitMQ) tasks. The stacked bars represent the mean
over 100 observations. As we can see from the figure, consistently
with the other evaluation criteria, from Tf = 10 on the computa-
tion time starts to cover the majority of the execution time. Here,

it is more evident that the chromosome size only influences the
execution time from a certain number of nodes on, a threshold
that is shifted accordingly to the individual fitness evaluation time
growth.

7.4. Setup time

To understand the feasibility of the approach in a real world
context, we analysed the setup time discriminating into the cre-
ation and deployment times. As depicted in Fig. 8, both the creation
and deployment times are proportional to the target number of
nodes but in a light way. In the case of the creation time, it
strictly depends on the specific capability of the cloud provider
of instantiating new virtual machines. Also, it is comprehensive
of the discovery time to let all the nodes be aware of being part
of the same cluster. As for the deployment time, it includes the
download of the RabbitMQ and AMQPGA images on all the nodes
and the actual scheduling of the containers. The considered times
are proportional to different influencing factor that can vary based
on the context but, in a general way, they can give an optimistic
measure of the setup time that takes only 5 minutes to have the
infrastructure ready to start the GAs. Even if with the cloud any
consumed time has its cost, this setup time is irrelevant if the GA is
run for many generations and also it is not required to be repeated
for any other GAs executed on the same cluster.

8. Discussion

In this section, we use the results from the previous section as a
starting point for a comparative discussion between AMQPGA and
other state-of-the-art approaches. We did not include approaches
on multi-core (i.e., CPUs) and many-core (i.e., GPUs) computation
since they are based on a fixed number of parallel workers and
cannot scale on several nodes [3], as distributed systems do. In
particular, we selected two most recent open source projects that
we believe are the closest to ours.

DEAP3 (Distributed Evolutionary Algorithms in Python) is a
framework that allows writing EAs, thus including GAs, in Python

3 https://github.com/DEAP/deap.

https://github.com/DEAP/deap
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Fig. 6. The speedup trend.

Table 3
The speedup values for Tf = 10, Tf = 100 and each chromosome size combination.

c Tf = 10 Tf = 100

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

128 0.877 1.779 3.455 6.957 13.138 16.038 14.058 9.969 0.988 1.975 3.946 7.891 15.628 30.486 56.681 74.939
256 0.877 1.775 3.465 6.958 13.140 16.504 13.831 9.678 0.989 1.975 3.951 7.895 15.585 30.749 52.914 78.033
512 0.879 1.774 3.451 6.967 13.047 15.854 13.215 9.227 0.988 1.977 3.949 7.886 15.616 30.815 57.994 80.539

1024 0.877 1.770 3.463 6.934 13.146 14.994 12.931 9.210 0.988 1.976 3.949 7.885 15.614 30.645 57.135 69.973
2048 0.875 1.765 3.434 6.941 13.118 13.807 12.509 8.741 0.989 1.978 3.951 7.888 15.589 30.321 50.488 67.842
4096 0.861 1.731 3.398 6.777 12.882 13.096 12.135 7.943 0.988 1.973 3.945 7.881 15.553 30.636 55.738 68.073
8192 0.853 1.709 3.335 6.689 12.528 12.467 11.463 7.642 0.986 1.972 3.943 7.868 15.500 30.403 58.775 60.880

16384 0.849 1.694 3.295 6.642 12.171 11.476 10.468 6.957 0.985 1.973 3.940 7.868 15.453 30.121 47.978 44.765
32768 0.832 1.653 3.216 6.501 10.296 9.058 8.170 5.720 0.983 1.971 3.927 7.812 15.382 30.212 49.961 41.780
65536 0.814 1.628 3.136 6.251 6.484 5.666 5.325 4.158 0.979 1.966 3.919 7.825 15.349 29.406 31.672 29.192

Fig. 7. The computation and overhead times achieved by the sequential and parallel GAs.

[44,45]. It employs SCOOP4 (Scalable COncurrent Operations in
Python), a Python module to define distributed tasks for con-
current parallel programming on various environments, including
cloud computing, based on ZeroMQ as message passing protocol.
Once defined the representation encoding and genetic operators,
the end user can define the execution flow of the GA. The ‘map’
function can be then used to apply a single operator, e.g., the fitness
evaluation function, to a collection ofmultiple individuals. Usually,
the map function is sequentially executed on the running process.
However, DEAP can transform themap function in a parallel or dis-
tributed one making use of multi-threading or SCOOP, relatively.

4 https://github.com/soravux/scoop/.

elephant565 is a framework to develop GAs to be run on an
Apache Hadoop MapReduce cluster [9,10,14]. Hadoop is currently
based on Yet Another Resource Negotiator (YARN), a platform that
comprehends also other distributed Apache products [46]. The
MapReduce paradigm is expressed in terms of two functions: the
‘map’ is responsible for handling the parallelisation while the ‘re-
duce’ collects and merge results. elephant56 completely hides the
parallelisation and MapReduce matters to the end user, who only
needs to define and assemble genetic operators for the GA. Then,
s/he has to decide which parallel model for GAs to use, e.g., the

5 https://github.com/pasqualesalza/elephant56.

https://github.com/soravux/scoop/
https://github.com/pasqualesalza/elephant56


P. Salza, F. Ferrucci / Future Generation Computer Systems 92 (2019) 276–289 287

Fig. 8. The setup times achieved by requesting different cluster sizes.

global, grid, and island, which will be automatically translated
into a proper MapReduce model. The end user can define his/her
GA using the implementations of individual encoding and genetic
operators already provided by the framework or implement some
newas Java classes. Once packed in a Java ARchive (JAR) file, Hadoop
is in charge of the distributed computation in the form of a job.
Hadoop distributes the jobs on a cluster of nodes by using Java
Virtual Machines (JVMs) for the computation and HDFS for the
reliable storage and passage of data.

In the following, we discuss some aspects in detail.

8.1. Genetic algorithms engineering

We mostly refer to what we presented in Section 2, where we
described the activity of applying modern software engineering
methodologies to develop, deploy and execute GAs as CBAs.

8.1.1. Invoking external components
As presented above, both DEAP and elephant56 allow defining

the encoding of solutions and genetic operators, for both single-
and multi-objective evaluations. They also already provide some
implementations of common components on the shelf. Let us focus
on one of the elements we think make our approach more flexible
as it is by design: the possibility of invoking external compo-
nents as genetic operators. Indeed, many implementations could
be available only in a particular programming language, e.g., a suite
for machine learning. In AMQPGA everything is packed in a soft-
ware container, which is a collection of the software to execute but
also of the environment configuration to run it. Using Dockerfiles,
it is possible to define the needed components to run the GA itself,
e.g., Go for AMQPGA master and slave executables, together with
other custom components. For instance, one could install a JVM to
run a Java application, or need a Python environment to run some
scripts. Then, the external components can be invoked bymeans of
simple shell calls to the underlying environment, as the component
were a black box and for which the GA only needs to interact
with it in terms of input and output. In the case of AMQPGA, the
customisation of the environment is included by design.

DEAP basically consists of Python code, and it is possible to
invoke shell commands. What is not already provided is an easy
customisation of the environment. However, DEAP can be easily

included in containers even if this behaviour is not expected by
design.

With elephant56 the things are a bit more complicated. Hadoop
executes the distributed jobs inside JVMs, running on computa-
tional nodes of the cluster. It is possible to temporary go outside the
JVM to invoke external commands. However, the customisation
of the environments requires that the end user would prepare
every node installing all the required components. Besides being
a time-consuming operation, it can also be not feasible in some
cases. Indeed, it is required to have administrators permissions to
have access to Hadoop nodes and install something on them. The
administrator of the Hadoop cluster might not allow that since any
modification could potentially compromise the health of the entire
cluster.

8.1.2. Continuous integration
As for the testing aspects, we refer mostly on local testing,

allowing typical CI activities. It consists in simulating sequential
and parallel execution on a single machine. We skip a discussion
about the testing of the frameworks themselves since their soft-
ware units can be easily tested with traditional methodologies.
Also, we exclude from the discussion the test for encoding and
genetic operators, which can be obtained similarly. Thus, we refer
to the GA application built upon them.

Being AMQPGA based on software containers, it makes no dif-
ference if the containers are run on a cloud cluster or a single
machine. Moreover, containers are a lightweight virtualisation,
thus requiring very low overhead on resources to be executed.
Also, RabbitMQandMongoDB canbe executed on a singlemachine,
therefore allowing a full simulation of the whole system.

DEAP includes testing activities both for sequential executions
and parallel ones. The parallel execution can be obtained by mak-
ing use of the Python ‘multiprocessing’ module that DEAP fully
supports. Unfortunately, the test of the distributed version using
SCOOP is excluded by design. However, the components could
be encapsulated in software containers and the run in the same
machine.

elephant56 allow testing in local, but it is easily achievablewith
one node only. The first option, i.e., ‘standalone’ mode, consists of
using Hadoop entirely in local, avoiding the use of HDFS. It allows a
very lightweight execution since all parallel functions are run using
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a single JVM. However, sacrificing the test of HDFS could be not
desirable because it is one of the key points of the Hadoop jobs.
Moreover, it is not possible to use multiple reduce executions that
is fundamental to test grid and island models. Instead, the second
option that is called ‘pseudo-distributed’ simulates all the required
Hadoop daemons, each one running on an independent JVM, thus
resulting in very heavy executions possibly not runnable with CI.

8.1.3. Continuous deployment
As for the CD, we consider and discuss the possibility of using a

cluster of multiple machines and extending the size of it when and
if needed.

AMQPGA is specifically devised to run in the cloud using a
container orchestration platform, e.g., CoreOS. The orchestration
platform is directly in charge of scheduling containers on the con-
nected resources.Moreover, as described in Section 4.3, a newnode
can join the cluster by simply installing CoreOS on it. As shown in
Section 7.4, the installation of a cloud cluster of 128 nodes takes
around 5 min. Furthermore, being AMQPGA based on RabbitMQ,
a new node can join a running computation even during a GA is
running, in a plug and play fashion. The AMQPGA nodes use the
discovery feature of CoreOS to reach the RabbitMQqueue, and then
they are ready to divide the computation with the others.

DEAP uses SCOOP for distributed tasks. SCOOP is based on
Secure SHell (SSH) to connect to remote hosts, thus using SSH
keys as a join condition to the same cluster. Even if SSH protocol
might result troublesome, DEAP can be potentially easily deployed.
It only expects the resulting machine to have installed a Python
environment, which is a very common configuration offered by
commercial cloud providers. However, the master node needs to
know a priori the list of the available resources with the relative
addresses, meaning that is not possible to join the distributed
execution while a GA is running.

elephant56, being aHadoop application, is strictly related to the
underlying platform. Maintaining and extending a Hadoop cluster
means having specific expertise with YARN. Indeed, every single
node needs to be set up by installing theOS first, the YARNplatform
and enabling proper SSH connection with the rest of the nodes.
Therefore, it can result in an effort-prone activity.

8.2. Performance discussion

Here we further discuss the results of the empirical study we
conducted, by comparing with the way DEAP and elephant56 op-
erate.

8.2.1. Execution time
In Sections 7.1 and 7.3 we analysed the execution time and

overhead when running several GA experiments. We varied the
chromosome size, i.e., the quantity of data required to represent
a single individual, and the fitness evaluation time, i.e., the re-
quired time to evaluate a single individual. As also demonstrated
by related work [11,12,14,30,31], distributed GA are expected to
be particularly effective with intensive computation, when the
fitness evaluation time overcome the overhead. Intuitively, the
chromosome size seems to be the main factor for overhead. It is
strictly related to the activity of communication, consisting of the
data that should be moved from one node to another. However,
also the specific characteristics of the communication protocol can
largely impact performance. In the case of AMQPGA, the presence
of amessage broker causes everymessage to pass through amiddle
point, be stored inside a queue, i.e., a data structure, before being
sent to the final destination. On the other hand, it guarantees full
reliability in message exchange, and there is no risk if a message
gets lost during transmission. Moreover, as described above, the

nodes can join the computation in a plug and play way at any
moment.

In the case of DEAP, the presence of SCOOP as distributed man-
ager lightens a bit the communication. It depends on the fact that
SCOOP uses ZeroMQ, which implements amessage queue protocol
for asynchronous communication but without using a message
broker. However, a master node needs to be fully in charge of
resource scheduling reducing the reliability of the whole cluster.

As for elephant56, the data passes through HDFS. On the one
hand, data is distributed over the nodes in the Hadoop cluster with
a redundancy protocol that guarantees the reliability of data. On
the other hand, as confirmed by the literature [14], HDFS is an
important bottleneck for communication. The application JAR files
have also to be transmitted all over the network when the job
starts, adding further overhead.

9. Conclusions and future work

In this paper, we distributed Genetic Algorithms (GAs) based on
the master/slave model with technologies specifically devised for
the cloud, i.e., the software containers, cloud orchestration and
message queues. We presented a novel implementation, called
AMQPGA, that exploits message queues to schedule parallel GAs
tasks. We also devised a conceptual workflow for development,
deployment and execution activities of distributed GAs as Cloud-
Based Applications (CBAs), exploitingmodern software engineering
methodologies and tools. Then, we empirically assessed the effec-
tiveness of the approach in terms of execution time, speedup, over-
head, using a dummy fitness function as a benchmark problem.
Finally, we compared AMQPGA with state-of-the-art approaches,
highlighting the pros and cons of using an architecture based on
containers.

We succeeded in accelerating the execution time of our GA ap-
plication up to a total number of 128 slave nodes. From the results,
it emerged that there is a dependency between computation load
and communication cost. We observed that the execution time
is directly proportional to the individual fitness evaluation time
and inversely to the number of cluster nodes. There is an inferior
limit for the evaluation time for the fitness function that makes
the parallelisation effective. Also, there is also a superior limit
regarding the chromosome size that, together with the population
size, determines the network load and thus influences the final
execution time. Moreover, we observed that the setup time can be
quantified to a few minutes even if the request is of many nodes
(e.g., 128). It isworth noting that this time is related to a completely
automatised activity, which does not require the human presence
as in the case of other methodologies, e.g., Hadoop [10].

The performance and setup times place the cloud positively
between other employed technologies for GAs parallelisation, e.g.,
multi-core systems, GPUs [3,4] and Hadoop MapReduce. Cloud
orchestration and software containers surpass limitations of ex-
isting approaches for parallel GAs distribution, offering exclusive
features such as environment configuration as part of the develop-
ment and plug and play join to the computation. Also, it is clear that
cloud orchestration for parallel GAs can be considered affordable
in an economical way, against other technologies strictly related
to the hardware physically owned.

One avenue for future work is to evaluate other models of
parallel GAs such as the cellular and islandmodel [2]. The empirical
study should be replicated with other fitness functions, and we
want to put into operation our structure by solving real world
optimisation problems, such as Test Suite generation [12,31] or
machine learning problems. To make the approach more flexible
and easy to use, we also plan to abstract the concepts further and
propose it in the form of a framework. In this way, the developer
would have to deal exclusively with the activity of problem encod-
ing. As for the cloud aspects, we want to measure other metrics
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such as energy efficiency and security of the algorithms [47]. We
aim at exploiting and investigating more the features of multi-
cloud [18], enhancing our architecturewith an IntentionWorkflow
Model [15,48] to reach full self-management of GAs execution
in the cloud, and considering the cost-effect factor of cloud spot
instances [49].
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