Empirical Software Engineering (2020) 25:2341-2377
https://doi.org/10.1007/510664-019-09754-1

®

Third-party libraries in mobile apps Check for
updates

When, how, and why developers update them

Pasquale Salza' @@ . Fabio Palomba’ - Dario Di Nucci? - Andrea De Lucia3 -
Filomena Ferrucci?

Published online: 24 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

When developing new software, third-party libraries are commonly used to reduce imple-
mentation efforts. However, even these libraries undergo evolution activities to offer new
functionalities and fix bugs or security issues. The research community has mainly investi-
gated third-party libraries in the context of desktop applications, while only little is known
regarding the mobile context. In this paper, we bridge this gap by investigating when, how,
and why mobile developers update third-party libraries. By mining 2752 mobile apps, we
study (i) whether mobile developers update third-party libraries, (ii) how much such apps
lag behind the latest version of their dependencies, (iii) which are the categories of libraries
that are more prone to be updated, and (iv) what are the common patterns followed by devel-
opers when updating a library. Then, we perform a survey with 73 mobile developers that
aims at shedding lights on the reasons why they update (or not) third-party libraries. We find
that mobile developers rarely update libraries, and when they do, they mainly tend to update
libraries related to the Graphical User Interface. Avoiding bug propagation and making the
app compatible with new Android releases are the top reasons why developers update their
libraries.

Keywords Third-party libraries - API usage - Empirical study - Mining software repository

1 Introduction

In modern development practices, a common practice to implement new software is to
reuse existing code, as it avoids the costs related to the implementation of complex func-
tions and modules, and it guarantees the usage of source code previously tested and
validated (Sommerville 2006).

Nowadays, a steadily higher number of companies develop software by means of Appli-
cation Programming Interfaces (APls), i.e., a set of subroutines and functionalities made

Communicated by: Chanchal Roy, Janet Siegmund, and David Lo

P4 Pasquale Salza
salza@ifi.uzh.ch

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09754-1&domain=pdf
http://orcid.org/0000-0002-8687-052X
mailto: salza@ifi.uzh.ch

2342 Empirical Software Engineering (2020) 25:2341-2377

available in the form of comprehensive packages, called third-party libraries, to allow other
software systems to evolve by re-using such components. For instance, large companies like
GOOGLE or APPLE provide hundreds of APIs that allow software houses and newcomers to
build upon these APIs their own software and re-distribute it into the market.

However, as any other software system, even libraries need to change to be adapted to
new market requirements and/or to be fixed with regard to defects experienced by clients.
Therefore, an update issued by the providers may contain improvements that make more
stable and reliable the external APIs on which other systems are build.

As soon as a new update is made available, the developer of an app that was using a
previous version of the library may decide to upgrade it and adopt the implemented improve-
ments. However, it can happen that a new version may require too much effort to be included
in a project or simply be defective, thus not being considered for an upgrade of its version.
For the same reason, the developer may consider a downgrade to a previous version instead
of an upgrade, in order to guarantee the stability of the app.

The aspects related to how the changes made to libraries are propagated through the
clients have been studied in the last years by the research community. Previous researchers
focused on the understanding of the dynamics behind the update strategies and the effects
of such changes to client systems. In particular, most of this work has investigated the
APIs usage in desktop applications (a.k.a. “traditional” applications (Kirubakaran and
Karthikeyani 2013; Muccini et al. 2012), namely the software running on a single computer)
with respect to (i) the reasons pushing developers in using a specific version of an API (Mil-
eva et al. 2009), (ii) the mechanisms adopted to guarantee backward compatibility (Bauer
et al. 2012; Raemaekers et al. 2012), and (iii) the impact of API deprecations on the source
code of client systems (Haney 1972; Yau et al. 1993; Black 2001; Robbes et al. 2012).

Despite the important research efforts conducted so far, we still identify a lack of knowl-
edge on how third-party libraries are treated in mobile applications. Indeed, while some
studies have been conducted to evaluate the diffuseness of third-party libraries in mobile
apps (Mojica Ruiz et al. 2012; Viennot et al. 2014; Linares-Vasquez et al. 2014), the impact
of their non-functional attributes on the commercial success of mobile apps (Dering and
McDaniel 2014; Bavota et al. 2015), and their visualization (Minelli and Lanza 2013a, b),
to date there is still lack of knowledge about the extent to which the phenomenon of change
propagation is present in mobile applications and how developers deal with it.

There are a number of reasons that make the mobile context particularly interesting with
respect to studying the developers’ decisions on whether to update third-party libraries.
First, both mobile applications and mobile third-party libraries are often subject to contin-
uous evolutionary development and maintenance (Mojica Ruiz et al. 2012; Viennot et al.
2014; Linares-Vasquez et al. 2014), with new releases being available on a much more
frequent basis than desktop applications: this aspect can influence the behavior of devel-
opers, who might be more conservative when updating external libraries close to a new
release. Secondly, mobile apps are often developed by young developers with little experi-
ence (Joorabchi et al. 2013): this naturally makes them different than the general population
of desktop application developers and may influence the way they deal with third-party
libraries. Thirdly, certain non-functional requirements (e.g. energy consumption Palomba
et al. 2019) are generally more pressing concerns for mobile developers with respect to the
others (Palomba et al. 2019; Fu et al. 2013): the usage and update of third-party libraries
may have an impact on such non-functional requirements and, for this reason, developers
might be more inclined to update them. Finally, the presence of active user communities
that continuously report change requests through user reviews (Chen et al. 2014; Palomba
et al. 2017) may lead developers to be more prone to adopt and update third-party libraries

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2343

that speed up the process of addressing the users’ requests. As a consequence, understand-
ing the mobile developers’ behavior with respect to the management of libraries becomes a
major challenge to face toward the definition of techniques and tools supporting developers
during their daily activities.

In our previous work Salza et al. (2018), we started addressing this challenge by con-
ducting a large-scale empirical investigation on how mobile developers update the libraries
used versions in their code.!

Specifically, we mined the evolution history of 291 Android apps in order to study the
change propagation problem under four different perspectives:

1. we studied whether mobile developers update the used version of external libraries;
we performed a fine-grained investigation of the categories of libraries for which devel-
opers are more prone to update the used versions, shedding lights on the likely reasons
pushing developers in having more care of them;

3. we extracted the common patterns followed by mobile developers to update the use
of libraries by means of an open coding procedure, and verified whether high- and
low-rated apps present peculiar update patterns.

The results of our previous study highlighted that only 38% of the external libraries in our
dataset were subject to at least one version change during the evolution history of the ana-
lyzed apps. Moreover, most of the updates were focused on third-party libraries related to
the Graphical User Interface (GUI) of the app (& 50%) or tools aimed at supporting devel-
opment activities (27%). By analyzing more in depth the likely causes behind the higher
number of version changes for these categories, we discovered that developers aim at keep-
ing the graphical user interface up to date with the latest tendencies, or updating Android
support tools in order to develop for the latest Android versions. Furthermore, the results
of our previous study showed that the main causes for the 62% of libraries whose version
is not changed, are the carelessness of developers or a high cost/benefit ratio. Finally, we
found that only 15% of the library uses have been updated constantly during the evolution
of the apps, and that most of them were related to successful apps.

This paper extends our previous analyses (Salza et al. 2018) by expanding the empirical
knowledge on the practices performed by mobile developers with respect to the update of
third-party libraries. Specifically:

1. we substantially expand the dataset, by conducting our analyses on an additional set of
2461 real-world mobile apps. Thus, overall, our empirical study features a total of 2752
applications;

2. we investigate the technical lag between library updates made available by providers
and actual adoption by developers, with the aim of assessing the time usually required
by mobile developers to change the version of a library being used;

3. we complement our software repository mining study with a survey study involving
73 experienced mobile developers that aims at shedding lights on the motivations
behind the practices actually applied and confirm/reject the observations of the
quantitative analyses. The second study has the objective of “triangulating” (Given
2008) the results of the software repository mining study with an analysis of the

UIn this paper we refer to version change to indicate every type of change performed by developers of a
mobile app in the usage of a third-party library, i.e., a version change can be an upgrade toward a newer
version of a library or downgrade toward a lower one.

@ Springer

2344 Empirical Software Engineering (2020) 25:2341-2377

human perspective that can help explaining the reasons behind the results of the first
study.

The specific goals of our study consist of characterizing (i) if and when mobile devel-
opers update third-party libraries, with the aim of deeper understanding the phenomenon of
change propagation in the context of mobile applications; (ii) which categories of libraries
developers are more prone to update, so that our results can be used to inform researchers
and tool vendors on how to prioritize third-party library updates; (iii) which policies devel-
opers apply when new libraries updates are available, with the goal of informing researchers
and tool vendors on the possible moments in which developers may be more interested in
updating their libraries and would like to have automatic support; and (iv) what are the
perceived (dis)advantages of updating third-party library, so that producers can understand
which are the current limitations that should be avoided to make third-party libraries more
used and useful for developers.

Our analyses reveal that most of the mobile apps suffer from technical lag and it con-
stantly increases over time. Moreover, we find that avoiding the propagation of bugs and
making the app compatible with new Android releases are the main reasons why developers
update their libraries.

Replication Package Besides the contributions reported above, we provide a comprehen-
sive replication package containing the raw data and scripts used to carry out the empirical
study (Salza et al. 2019).

Structure of the Paper The paper is organized as follows. Section 2 describes the design
of the empirical study, while Section 3 reports and discusses the obtained results. Section 4
analyzes the threats that could affect the validity of the results of the study. Section 5
overviews the related literature on third-party libraries usage in traditional and mobile
applications, and their effects, while Section 6 concludes the paper.

2 Empirical Study Design

The goal of the empirical study is to analyze (i) whether and when mobile developers update
the version of third-party libraries in their apps, (ii) which categories of libraries developers
are more prone to update, (iii) which policies developers apply when new libraries updates
are available, and (iv) what are the perceived (dis)advantages of updating third-party library.
These objectives have the aim of understanding the phenomenon of change propagation in
the context of mobile applications, inform researchers and tool vendors on how to priotitize
third-party library updates as well as the moments in which developers may want to have
more automated support, and which are the current limitations that should be avoided to
make third-party libraries more used and useful for developers.

2.1 Research Questions
Our study revolves around three main research questions. The first aims at understanding

if and when developers update third-party libraries of mobile apps. To better study this
perspective, we designed two sub-research questions that capture it under different angles:

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2345

RQ; 1 Do mobile developers update third-party libraries?
RQ; , How does the technical lag of mobile apps vary over time?

RQ) 1 represents a preliminary analysis aimed at assessing the extent to which third-party
libraries are updated by mobile developers. In RQj ,, instead, we performed an analysis on
the technical lag observable in mobile apps, namely what is the general delay in the adoption
of third-party libraries.

Once we had assessed when developers update the version of the used libraries, we
focused on how they actually do it. Specifically, we considered three main aspects:

RQ, 1 What types of third-party library uses are more prone to be updated?
RQ,, What types of third-party library uses are generally not updated?

RQ, 3 What types of update patterns developers follow when updating the third-party
libraries?

In RQ;; and RQ,, we conducted a fine-grained exploration into the types of libraries
whose uses are more likely updated, aiming at understanding how developers work and at
classifying what categories (e.g., security) developers are more and less sensitive to update,
and what are the possible reasons behind their behavior. Moreover, in RQ, 3 we were inter-
ested in observing and possibly delineating a trend in the developers’ reactions when an
update of a library is available, with the goal of understanding whether they steadily update
the libraries, or if the updates are rarely performed. In the context of the paper, we define
and refer to these trends as “update patterns”.

Afterwards, we moved toward the understanding of the developers’ perspective, namely
we aimed at collecting their opinions with respect to the adoption and update of third-party
libraries in mobile applications:

RQs ;1 Do developers frequently make use of third-party libraries when developing
mobile apps?

RQs, What is the mobile developer’s perspective on third-party library updates?

First, with RQ3; we investigated whether developers make use of third-party libraries
and why, independently from the update activities. We entered more in detail with RQj,,
where we asked to describe the reasons why they perform update actions, i.e., upgrades or
downgrades.

2.2 Context Selection

The context of the study consists of mobile apps, needed to address RQ; and RQ,, and
developers of those apps, who were surveyed to answer RQs.

@ Springer

2346 Empirical Software Engineering (2020) 25:2341-2377

Mobile Apps Our study focused on a total of 2752 open-source mobile apps, which were
collected as follows. First, we considered the entire change history of 291 Android apps
from the F-DROID repository,> which is a catalog of Free and Open Source mobile apps.
Even if F-DROID contained a total 1181 at the time of the analysis, only 291 satisfied the
requirements of our mining process for the input apps: (i) make use of third-party libraries,
and (ii) have dependencies that are still available. More details on the app filtering procedure
are given in Section 2.3. However, dataset size respects the requirement for generalization
that we computed using STATS ENGINE,? a tool that takes into consideration categories and
size of the apps and is able to find an appropriate sample size to allow the generalization of
the results on the set of apps composing F-DROID.

While this dataset contains a reasonable number of apps, it may contain toy apps and/or
applications that are not available in the GOOGLE PLAY store (Pascarella et al. 2018; Geiger
et al. 2018; Krutz et al. 2015). For this reason, we decided to augment the initial dataset
with additional real-world apps. To this aim, we exploited a publicly available dataset of
mobile apps, named ANDROIDTIMEMACHINE, previously built by Geiger et al. (2018);
overall, it contains 8431 open-source Android apps whose information has been extracted
by combining different data sources with the aim of building a dataset only composed of real
apps. For each app, the dataset provides: (i) metadata of GITHUB projects, (ii) full commit
and code history, and (iii) metadata from the GOOGLE PLAY store.

We selected 2461 of these 8431 apps because of the above mentioned requirements of our
data mining process. It is worth noting that the selected apps belong to different categories
and have different scope and size. A detailed report of the characteristics of the apps used
in this study is available in the online appendix (Salza et al. 2019). All the selected projects
provide their source code in a public repository on GITHUB and use GRADLE as build
system. As for the libraries, they are all publicly available on different repositories, e.g.,
MAVEN, JCENTER, BINTRAY.

Recruitment of Developers We invited the original programmers of the 2752 opens source
apps we considered in the mining study. We first extracted all the GITHUB public repos-
itory addresses of the developers contributing to the considered apps. Then, we selected
those contributors who participated in the development of a single app with at least 5 com-
mits. While 5 may be a small number, we selected this threshold as done in previous works
(Palomba et al. 2018a; Scalabrino et al. 2017) with the only aim of excluding occasional
developers or newcomers. Following this process, we invited a total of 1622 original devel-
opers, receiving a reply from 73 of them: the response rate was therefore close to 4.5%,
which is similar to the one achieved by other survey studies (Palomba et al. 2014, 2018a,
b; Vassallo et al. 2018). The questionnaire was created and distributed to participants using
GOOGLE FORMS.* It was first available from September 15% to November 11, 2018; then,
it was open from January 20® to March 20™, 2019. The link to the questionnaire and a
short introduction were sent to every recruited developer via e-mail. We estimated a com-
pletion time of 15 min. The questionnaire included a pre-survey section in which we asked
developers about their profession, experience, and number of mobile apps developed so far.
From the reported answers, the participants in the study were mostly professional develop-
ers, 53% specifically working in the mobile field, and 36% as software developer in general.

2https://f-droid.org
3https://www.optimizely.com/statistics/
“https://www.google.us/intl/en/forms/about/

@ Springer

https://f-droid.org
https://www.optimizely.com/statistics/
https://www.google.us/intl/en/forms/about/

Empirical Software Engineering (2020) 25:2341-2377 2347

The others (11%) declared to be non-professional developers. Most of the developers (46%)
have been developing mobile apps for more than 5 years. Only a few of them (9%) had an
experience of less than 1 year. Moreover, the number of apps developed is more than 5 for
63% of participants.

2.3 Data Mining Process

To answer RQ; and RQ,, we first needed to extract data from various sources. Therefore,
we devised a data mining automated process, based on different components and operations.
Our main aim was to collect the information regarding: (i) when the version of a library
declared in a project changed, i.e., library update; (ii) when that library was upgraded by
its developers, i.e., library release update. Collecting this data, we were able to compare the
version change events with the releases of libraries, thus answering the research questions.
Figure 1 shows the process we applied for each considered app, consisting of the following
points (indicated with the same number in the figure):

1) Dataset parsing: the F-DROID repository data, provided as a single eXtensible Markup
Language (XML) file, was parsed in order to retrieve the public repository address of
the source code. As for the apps coming from ANDROIDTIMEMACHINE, they were
available in a Neo4j graph-based database® which was queried to extract the public
repository address of the apps.

2) Source code repository cloning: once established the public address of the repository,
we performed a full repository GIT cloning (i.e., project downloading, including all the
commits) in our local storage.

3) GIT commits extraction: we iterated through the list of commits by using the git
checkout operation, and saved the files belonging to each single snapshot in separate
directories. It allowed us to physically reproduce the status of the app source code
during its entire development history.

4) GRADLE libraries parsing: we explored the commit directories and parsed the
build.gradle files to retrieve the declarations of third-party libraries depen-
dency for each app. The libraries were reported with the general pattern: <
configuration> < group> :< name> :< version> .Itis worth not-
ing that the GRADLE definition language allows expressing library version declarations
in different syntax ways, thus we included other patterns in the parsing operation. In
particular, GRADLE allows the user to indicate the version of the libraries also in a
dynamic way. For instance, 1.0 .+ would mean that the targeted version is anything
available at compile time that respects the declaration, whose first part is explicitly
specified (1.0 .) and the last dynamically (+). Being this pattern often present within
the analyzed dataset, we dealt with it by considering the nearest available version at the
time of the commit, reproducing a reasonable compile scenario. In this way, we col-
lected the employment of the libraries, reporting the versions during the history of each
observed app project. In this step, we had to discard 3292 apps from the ANDROID-
TIMEMACHINE dataset because GRADLE files were absent or were not syntactically
valid for the majority of the commits.

5) Dependencies mining: once we collected the list of libraries and the specific ver-
sions for each commit, we queried the most used repositories for Android libraries,

Shttps://neodj.com

@ Springer

https://neo4j.com

2348 Empirical Software Engineering (2020) 25:2341-2377

.o 1

F-Droid

0

Remote
Git Repository

%

@ @ MRGradle
0 =0- commit 1 build.gradle
> Git Cloner > O co.mmn 2 bulld.'gradle

Local . .
Git Repository =O= commitn build.gradle

Gradle Parser

Il

Android
TimeMachine @

(@)
Teo

0 ¢ (o) < |0

Release Use

Dependencies i T @ Dependencies

\T;- Remote
Maven Y Dependencies

JRogBintay Repositories

Fig.1 The data mining process used in the study

6)

e.g., MAVEN, JCENTER, BINTRAY, looking for the release dates of those versions. We
performed a “trial and error” process to find the repository having that piece of infor-
mation. In some particular cases, the libraries were released as a GITHUB open source
project, thus we queried the list of releases to retrieve the dates. For the Android Soft-
ware Development Kit (SDK) libraries, we directly queried the GOOGLE servers and
retrieved the release dates as HTTP content publishing dates. However, this process
did not worked out for 2678 apps of the ANDROIDTIMEMACHINE dataset. Indeed, for
these applications the declared third-party libraries were no longer available, thus not
allowing us to process them.

Data storing: As a final step, using a PYTHON script we grouped all the information on
the library version changes and releases for each app in the form of a Comma-Separeted
Value (CSV) file containing the following four columns: (1) the “group”, i.e., the suffix
of the library name, to which a certain library belongs, (2) the “name”, i.e., the actual
name of the library, and (3) the “version”, i.e., the label of the library used in a certain
moment, (4) the “date”, i.e., describing the date of the event, following the I1SO-8601
format.

As final output of the data mining process, we could correctly collect information for

2461 apps of ANDROIDTIMEMACHINE and 291 of F-DROID, for a total of 2752 apps.
The data extraction process took approximately 9 weeks, using 4 Linux workstations, each
having 8 cores CPU and 8 GB of RAM. The main reason behind the considerable amount
time is that we had to process all the available apps, namely 1181 from F-DROID and 8431
from ANDROIDTIMEMACHINE, for a total of 9612 apps. In particular, we cloned all the GIT
repositories and iterated over all their commits. Unfortunately, only during the last phases
of the process we could exclude part of the apps, which did not respect the requirements,
and save some time. It is worth remembering that the CSV files obtained at the end of the
mining process are publicly available in the online appendix (Salza et al. 2019).

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2349

2.4 Methodology and Analysis Method

In the following we illustrate the methodologies and analysis methods we employed to
adress the research questions.

2.4.1 Technical Lag Methodology (RQ)

Once completed the data extraction process, we started addressing RQy 1. Firstly, we com-
puted the number of times the version of libraries were changed, i.e., considering how many
times the declaration of the library in the build.gradle file changed over time, with
respect to the number of times a new version of the library was issued. In this way, we were
able to understand whether the uses of such libraries are updated or not in the subject apps.
Secondly, we characterized whether the observed version changes referred to “upgrades”,
i.e., a version change made to catch the latest release update of a library, or “downgrades”,
i.e., version change to restore an old version of a library. To distinguish between the two
categories of version changes, we mined the version history of the libraries available in
the MAVEN repository, analyzing which of them were used by a certain mobile app dur-
ing its history. Specifically, starting from the first commit on the repository until the end
of the observed history, we iteratively considered commit pairs (C;, C;41) and compared
the build.gradle files in the two snapshots. For each library Ly used by an app, if the
release version declared in the build.gradle of C;4; was higher than the release ver-
sion declared in the build.gradle of C; (according to the version history on MAVEN),
then we considered it as an upgrade of L. Otherwise, if the release version of Ly in Cj 4
was lower than the release version of L in C;, we counted a downgrade for L. In Section 3
we reported the distribution of the number of upgrades and downgrades for the investigated
apps.

As for RQq ,, we computed the technical lag affecting the apps in our dataset. Broadly
speaking, technical lag has been defined by Zerouali et al. (2018, 2019) as the time between
the availability of a new version of a third-party library and the usage of such version within
an application.

Specifically, let p be a dependency included in deps,, i.e., the set composed of all the
dependencies of a client (e.g., a mobile app), and ¢ a point in time. Let available(p, t) be
the set of all releases of p that are available at time ¢ and installable(d,) be the set of all
available releases of the dependency d that satisfy the dependency constraint. It is worth
noting that in this study the dependency constraints are defined in the GRADLE file of each
app. Given available(p, t) and installable(d, t), we define missed(d, t) as the set of the
releases of p that could not be updated in the client because of the dependency constraint.

The technical lag A,(d, t) for the dependency d at time 7 is equal to O if none of the
releases of d was skipped (e.g., missed(d, t) =). Otherwise, it is equal to the difference
between the date of the first release that was skipped and 7, i.e., A;(d, t) = t — min{date, |
r € missed(d, r)}, where r is a missed release and date, its release date.

Finally, given a client c¢ (e.g., a mobile app) and the set of its dependencies deps,., its
technical lag at time ¢ is the maximal technical lag induced by all its dependencies, i.e.,
Ai(c,t) =max{A;(d,t) | d € deps,.}.

It is important to point out that previous studies (Decan et al. 2018; Zerouali et al. 2018)
demonstrated that a high technical lag could lead to serious consequences such as backward
incompatibilities and security vulnerabilities. Thus, studying the technical lag represents an
opportunity to measure the extent to which mobile apps are prone to such undesired issues.

@ Springer

2350 Empirical Software Engineering (2020) 25:2341-2377

From a more practical point of view, we computed the number of days between the first
release of the library that could not be used because of the dependency constraint and .

2.4.2 Apps History Analysis Methodology (RQ3)

As for RQ, 1 and RQ; ,, we manually categorized the libraries. We started from the taxon-
omy provided by MAVEN. Unfortunately, a category different from the ambiguous “Android
Packages” was available only for ~ 10% of the libraries. Therefore, we manually classified
the categories of libraries in our dataset. This process was done by three authors of the paper,
who jointly analyzed each library and classify it based on its characteristics and features.
Such a process followed three iterations in which the authors discussed and continuously
improved the taxonomy until ending up with the final set.

Once assigned the investigated libraries to the corresponding category, we counted the
number of updates for the libraries in a certain category and the number of upgrades
and downgrades occurring in each category. Moreover, we complemented this analysis
by means of qualitative examples aimed at understanding the likely reasons behind the
higher/lower updates of libraries in given categories. To this aim, we manually analyzed
commit messages and comments left on the repository by the developers of the apps present-
ing the higher and lower version change with respect to a certain category. It is important
to note that this qualitative investigation had not the goal to systematically analyze and
classify all the possible causes leading developers to update or not a library version, but
instead that of finding likely reasons behind upgrades and downgrades occurring on specific
categories.

To determine the update patterns and answer to RQ, 3, we adopted an “open coding”
process (Strauss and Corbin 1998), which is a set of activities used to discover ideas, con-
cepts and theories through the manual analysis of contents. We distributed between the
participants the library version changes history of all the observed applications. Starting
from the total 11626 library histories considered, four authors were assigned to the analysis
of a sample of 3500 of them. This sample was composed of 2906 library histories that each
author was required to analyze independently plus additional 594 library histories that were
also evaluated by one of the other authors. Each author independently analyzed the way
mobile developers update the version of the libraries, by relying on a graphical representa-
tion of the evolution of a library version change in a given mobile app. The classification
results for the 594 library histories coming from each author (2374 in total) allowed us to
study the inter-rater agreement (Gwet 2014) among them with respect to the assigned update
patterns. To this aim, we computed the Krippendorff’s alpha agreement metric (Krippen-
dorff 2011), which measured 0.87, that indicates a high agreement. Looking at the graphs,
the involved authors independently classified an update-pattern using a label, e.g., “dili-
gent update” when the version of a library was constantly changed during the evolution
of a certain app. Figure 2 depicts one of the graphs analyzed during the open coding pro-
cedure, referring to the library com. jakewharton:butterknife used by the app
ANDROIDRGBTOOL. The purple line represents the evolution history of a library: the y-axis
reports all the versions of the library, while the x-axis reports the time expressed in terms
of months. Therefore, each purple point represents a new release of a certain library. The
blue line represents instead the evolution history of the library usage for the specific mobile
app. In particular, each blue point depicts the version of the library that is used in a certain
commit. A library is considered updated only if its version changes between two consec-
utive commits. Looking at the figure, it is clear that the ANDROIDRGBTOOL’s developers

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2351

Type -* Release —o— Use

8.0.0-
7.01-
7.0.0-
6.1.0-

6.0.0-

Version

51.2-

Fig. 2 An example of update pattern, the com. jakewharton:butterknife library evolution for the
COM.FASTEBRO.ANDROIDRGBTOOL app

constantly changed the version of the library used as soon as a new release was available.
This was classified, therefore, as a “diligent update”.

Once the first step of the open coding procedure was concluded, the authors discussed
their codings in order to (i) double-check the consistency of their individual categorization,
and (ii) refine the identified categories by merging similar categories they identified or split-
ting when it was the case. To evaluate the open coding process, we computed the level of
agreement between the authors using the widely known Krippendorff’s alpha Kr, (Krip-
pendorff 2004). As a result, the agreement was equal to 0.87, thus being considerably higher
than the 0.80 standard reference score (Antoine et al. 2014) for Kr,. In the other cases, the
four authors opened a discussion in order to reach an agreement. In Section 3, we reported
the percentage of times we classified specific update patterns, by also providing qualitative
examples aimed at explaining the underlying reasons behind the observed behaviors.

2.4.3 Developers’ Surveying Methodology (RQ3)

Table 1 lists the questions asked to the survey participants. Basically, we treated two themes,
i.e., adoption of third-party libraries and pros/cons perceived by developers on their update.
With the first set of questions (Q1.1-Q1.3) we collected opinions on the usage of third-party
libraries and motivations behind their use. In the second part of the survey, we gathered
deeper information on how libraries are updated and why (Q2.1-Q2.7). Moreover, we asked
questions related to pros and cons of the update of such libraries and whether some specific
factors, e.g., users’ feedback or effort required to update a library, influence the decisional
process (Q2.8-2.14). It is important to note that, to allow developers to express their opinions
without forcing their answers in a restricted set, we preferred to keep most of the questions
as open. Moreover, we avoided providing participants with a predefined set of answers to

@ Springer

Empirical Software Engineering (2020) 25:2341-2377

2352

ou ‘Sox

SABM[E ‘UDIJO ‘SOWIIOWOS ‘A[oIel ‘TOAIN
uonsanb uadp

SABM[E ‘UDIJO ‘SOWITIOWOS ‘A[oIel ‘TOAIN
SABM[E ‘U2IJO ‘SOWITIOWOS ‘A[oIeT ‘TOAIN
uonsanb uado

uonsanb uadg

uonsanb uadp

uonsanb uadp

uonsanb uadg

uonsanb uadp

uonsanb uadp

Apuenbaiy £10A ‘Apjuanbaiy ‘sowmowos ‘Ajorer 1AdN

Apuonbaiy L1904 ‘Apuonbaig ‘sowmowos ‘Ajorer 1AdN

uonsanb uadp
S<CY'eT
Apuanbaiy A19a ‘Apuanbaly ‘sowmowos ‘A[arel ‘IoAdN

{onssI AJLIN09s & 0} anp ATeIqI[& Jo opeiSumop & pawrtofiad 10A9 nok oAy $1°20
{,SoNSSI AILINO3S 0NpoNUI P[NOD AIvIQI] B By} JUNOJIE OJUT B) noK op ‘Areiqr] & apeiSdn Jo asn nok uaypy [e
({1039 9} AJeWINISO NOA Op MOH (ATe1qI & oyepdn 0] pa1rnbar 11039 9y} JUNodoe oJur eI nok o 120
(parepdn sorreiqip dooy 03 yorqpPady sIesn JUNOJE OJul de) N0k og 1120
(Areiqr] e Surpei3dn 1oy dde oA 3s9) nok o 0120
(Areiqr] e Sunepdn ur suod urew 2y} aae yorym ‘uorurdo oAk ug 670
(Areiqr e Sunepdn ur soxd urew oy} 1€ yorym ‘uorurdo oAk ug 870
(wayy depdn jou nok op Ayp 170
(39 2y} arepdn nok op sarreiqry jo sadA) Yoy 970
Lwayy depdn nok op Ayp [S¢de)
(isowr oy 9epdn noA op sorreIqr] Jo sadA) yorya +'720
(Aum ‘pauadder 11 31 €70
({AIeI1qI] B pIpRISUMOP IOAQ NOA dABH 72720
(soure1qI] anoA opeis3dn noAk op Apuanbaiy moy 120
sqjepdn soureaqiy Ayred-paryg,

{,SALIBIQI[9sn NOA op AYp\ €10
(sdde 1oX jo yoes 10y opnpout A[jensn nok op SaLBIQI] Auewl MOH 10
(sdde or1qow dojeaap 03 saLeIqI] 9sn nok o 1'10

saure1qI| Ayred-pary) Jo 9sn)

SIOMSUR 9[qISSO]

uonsand) al

sojepdn pue a3esn Areiqr) A1red-pary uo suoruido s1odofoadp oy uo suonsanb £oang | ajqel

pringer

NS

Empirical Software Engineering (2020) 25:2341-2377 2353

avoid lazy responses (Grandcolas et al. 2003), that appears in case developers with no opin-
ions on the topic still answer the questions, thus creating a form of bias in the interpretation
of the results (Nickerson 1998).

In Section 3 we report statistics of the distribution of the developers’ answers over the
categories present in the closed questions (i.e., where the possible answers are predefined),
while we qualitatively analyzed the collected answers for open questions: to this aim, we
first summarized in a short phrase the essential topic of each open answer; then, we iden-
tified explanatory codes to create emergent themes that we discussed among the authors
(Khandkar 2009).

3 Results
In this section we discuss the results achieved aiming at answering our research questions.
3.1 RQq - When Do developers Update Third-Party Libraries?

Before discussing the results for RQyq, it is worth observing the diffuseness of third-party
libraries usage in our dataset. Table 2 shows that all the apps rely on at least 1 external
library. While this is quite expected (Android apps need to refer to the android. core
library to be run), it is also important to observe that the average usage of libraries is almost
4, with apps even reaching 44. It is worth noting that we did not took into consideration
inherited dependencies, because they are not explicitly in control of the developers. Table 3
shows the 33 categories of the 1043 libraries considered in our study. The table is sorted
in descending order by the count of libraries. Over 30% of the libraries refer to the cate-
gories GUI. It means that developers often rely on libraries providing a set of tools for the
implementation of GUIs, rather than implementing their own GUI. The libraries that ease
networking management and development (“frameworks”) follow.

The analysis of the diffuseness is needed to support our work. Indeed, a better exploration
of the phenomenon may be useful for researchers and practitioners to focus their effort on
devising specific techniques and tools to support the evolution of libraries. The following
subsections discuss the results for the sub-research questions formulated within RQy.

3.1.1 RQ.1 - To What Extent Mobile Developers Update the Version of Used
Third-Party Libraries?

We found that =~ 30% of the libraries are subject to at least one version change, while
the version of the remaining ones has never been updated since its introduction. From the
results, it seems that Android programmers tend to not update the version of used external
libraries, being more prone to inherit bugs or vulnerabilities present in older versions of the
used libraries. Moreover, starting from the change history information of each considered
app, we also computed the number of commits involving a version change of a third-party
library. We do this further step to complement our empirical overview of the extent to which

Table 2 Distribution of]
third-party libraries in our dataset Mean Min Ql Q2 Q3 Max

4.627180 1 2 3 6 44

@ Springer

2354

Empirical Software Engineering (2020) 25:2341-2377

Table 3 Third-party libraries
categories considered in out study

Category Libraries Percentage (%)
Graphical user interface 322 30.87
Networking 112 10.74
Frameworks 95 9.11
Parsers 64 6.14
Utilities 63 6.04
Cloud 43 4.12
/0 36 3.45
Multimedia 26 2.49
Testing 26 2.49
Logging 26 249
Database 23 2.21
Security 23 2.20
Localization 21 2.01
Maintenance 19 1.82
Concurrency 19 1.82
Encryption 19 1.82
Rendering 15 1.44
Date 14 1.34
Information retrieval 9 0.86
QR Code 8 0.77
Analytics 7 0.67
Crash reporting 7 0.67
Payments 6 0.58
Compression 6 0.58
Sensors 6 0.58
Math 6 0.58
Advertising 5 0.48
Gaming 5 0.48
Plotting 5 0.48
Templating 2 0.19
Code inspection 2 0.19
Generators 2 0.19
Parsing 1 0.10

libraries are updated by mobile developers. In this case, we observed that a very low per-
centage of commits (on average 1%) involves the version change of a library. This somehow
is consistent with the idea that Android developers are poorly interested in updating the
version of used libraries. It is worth noting that we are aware that a missing update might
be due to the library being not updatable(e.g., because no newer versions are available): a

deeper investigation into this aspect is presented in RQj,.

Looking more in depth at the types of version changes performed by developers, Table 4
and Fig. 3 show: (i) the version changes, (ii) changes toward newer versions (i.e., upgrades),

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2355

Table 4 Description of the changes per app

Mean Min Q1 Q2 Q3 Max Total
Changes 3.492006 0 0 0 2 351 9610
Upgrades 2.845930 0 0 0 2 181 7832
Dowgrades 0.646076 0 0 0 0 173 1178

and (iii) changes toward older versions (i.e., downgrades) performed on each subject apps
over the considered timeline. It is observable that the mean number of upgrades per app
is significantly higher than the downgrades. Indeed, 81.50% of the version changes are
represented by upgrades, while 18.50% of them are downgrades. This result matches com-
mon expectations, since the upgrade of a used library version should represent the normal
situation in which developers get the latest available version.

Nevertheless, the number of downgrades is surprisingly high. To better understand the
reasons behind this anomalous phenomenon, one of the authors of this paper manually ana-
lyzed the apps having a higher number of downgrades. More specifically, he analyzed the
third-party library update history of all the apps having a number of downgrades higher
than 15; this threshold was based on the analysis of the box plot shown in Fig. 3: indeed,
15 is the number of downgrades that discriminates the outliers of the distribution. This
led to the analysis of 13 apps. As a result, we found that in all cases, where a consistent
number of downgrades was performed, a high number of upgrades was applied as well.
It is the case of the COM.OWNCLOUD.ANDROID app, which is a system that allows the
management and sharing of synced files and folder across devices. The app depends on
the com.android. support : appcompat -v7 library, which is needed to implement a
Material Design interface guaranteeing the compatibility with previous versions of Android.
In the period that we considered, the version of this library was upgraded and downgraded
(from version 19.1.0 to version 22.2.1, and viceversa) 33 times. This behavior was
instigated by the fact that the upgrade broke the building process, as reported on the issue
tracker:®

“Anyone, any idea why the build fails? The classes necessary for compile (even for
the first commit!) need compile com.android.support:appcompat-v7 to resolve the
imports which have been included in the gradle file... does maven need to be updated
too?!”

From this example, it seems that developers downgrade the version library only when a
previous upgrade of that library caused issues not easily addressable for developers. We
observed a similar behavior even when analyzing the other outliers. Nevertheless, a further
analysis of the reasons sometimes leading developers to downgrade the version of their
libraries is presented in the context of RQ3, where we directly inquired mobile developers
on this aspect.

Shttps://github.com/owncloud/android/pull/ 1070

@ Springer

https://github.com/owncloud/android/pull/1070

2356 Empirical Software Engineering (2020) 25:2341-2377

20+ ? 21,22, 23, 1 21,22, 23, o § 313335
- 27, 29, 30, - 27,31, 32, °
° 33, 34, 36, ° 35 °
15- S 39 40,63 T
s 6870 -
° [] o
0 : : :
o o []
® ® []
® ® []
5- ° ° ®
[] ® []
[} [] []
A [[]
0- [g 1| 2] & y Q
L} L} L}
Changes Upgrades Downgrades

Fig. 3 Boxplots of the third-party libraries changes, upgrades and downgrades per app. The arrows indicate
higher outliers that we hid to enhance the comprehension of the boxplots

Developers rarely update third-party libraries in mobile apps. When an update is
performed, it is usually an upgrade toward a newer version. When a downgrade is per-
formed, the reason seems to related to incompatibilities with the newer versions of the
library.

3.1.2 RQq; - What is the Technical Lag of Mobile Applications?

Figure 4 depicts the overall monthly distribution of technical lag for the mobile applications
considered in the study. In particular, the y-axis reports the technical lag (expressed in days),

1250-
1000~
m
>
3
= 750-
(o))
©
®©
S
E 500-
3
@
250~
0.
S5 % &vu@ééééééé"\ A o 0 0 9 0 L0
'\'\ '\'\’\'\’\’\'\’\'\’\ N AY AN AN AN NN
I P S S
wmmmmwwmwmmmwmmmmm R R CAIRG
B O A I U U U U R U LS I U
Date

Fig.4 Summary of the technical lag accumulated by all the considered apps over time. The light-green area
represents the first and third quartile of the technical lag distribution, the dotted line its mean, and the solid
line its median

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2357

while the x-axis reports the time expressed in quarters. The continue green line represents
the median values, while the dashed green line reports the mean. The technical lag has been
computed as a time difference by following the algorithm provided by Zerouali et al. (2019).
In short, for each commit of an Android application, first we computed the technical lags for
each employed library, and then we aggregated these values using the maximum operator.

A complete report of the technical lag of the single apps is available in our online
appendix (Salza et al. 2019). From the chart, we could observe a steady increase of the
average technical lag during the considered period; this is confirmed when considering
the median that follows a similar behaviour. These results clearly indicate a notable delay
with which mobile developers update the version of the third-party dependencies that they
declared in their applications. Furthermore, the technical debt evolution seems to be worse
with respect to what Zerouali et al. (2019) found in the npm package dependency net-
work. Indeed, while they found that the technical debt tends to be stable after few years,
we discovered that the evolution is linearly increasing. It is important to note that, while we
presented an overall view of the phenomenon, we did not analyze the technical lag for spe-
cific apps over time. In other words, we can claim that the phenomenon of technical lag is
constant over our dataset and that developers update third-party libraries consistently late
with respect to the introduction of a newer version of those libraries.

Mobile apps suffer from technical lag. On average, the technical lag is consistently
increasing over time, thus suggesting that developers significantly delay the update of
third-party libraries.

3.2 RQ; - How do developers update third-party libraries?

The second research question aimed at analyzing, under different angles, how developers
actually update third-party libraries in mobile applications. To ease the readability of the
paper, we split the discussion of the sub-research questions in different subsections.

3.2.1 RQa.1 - What Types of Third-Party Library Uses are More Prone to be Updated?

In our dataset, we found 33 categories for the 1043 external libraries version changes of the
2752 Android apps analyzed. Table 5 shows the categories sorted by the number of changes
in descending order.

Looking at the table, it is evident how most of the libraries whose versions are more fre-
quently changed by developers relate to the GUI category. While this result may be a natural
consequence of the high diffuseness of GUI libraries, it is also worth noting that this cate-
gory is the one having the highest number of upgrades. Thus, we can confirm the previous
findings achieved by Hou and Yao (2011) on the importance of such libraries for developers,
as they represent the way in which they can communicate with end-users. The frequent ver-
sion changes of these libraries can be explained in two ways. On the one hand, most of the
comments received by developers from the GOOGLE PLAY STORE are related to the GUI of
the application, as demonstrated in previous work (Pagano and Maalej 2013; Palomba et al.
2017; Grano et al. 2018). Thus, developers may be more interested in updating the GUI to
fix issues experienced by users. On the other hand, the higher attention is motivated by the
fact the developers want to keep the user interface up to date with the latest tendencies. The

@ Springer

2358 Empirical Software Engineering (2020) 25:2341-2377

Table 5 The 33 categories of
third-party libraries sorted by the Category Changes Upgrades Downgrades
number of version changes

Graphical user interface 7313 5923 1390
Frameworks 624 516 108
Networking 246 204 42
Cloud 196 142 54
Parsers 177 150 27
Code inspection 176 152 24
Utilities 173 150 23
Multimedia 132 106 26
Localization 103 91 12
/0 61 41 20
Logging 54 48 6
Advertising 45 35 10
Payments 42 40 2
Date 39 35 4
Analytics 36 31 5
Database 30 27 3
Concurrency 24 22 2
Security 22 22 0
QR Code 21 15 6
Testing 20 19 1
Encryption 15 11 4
Crash reporting 14 14 0
Rendering 14 9 5
Plotting 10 7 3
Sensors 9 9 0
Maintenance 8 8 0
Gaming 5 4 1
Templating 1 1 0
Information retrieval 0 0 0
Math 0 0 0
Generators 0 0 0
Compression 0 0 0
Parsing 0 0 0

latter claim is supported by the manual analysis we made on the repositories of the subject apps:
in this case, one of the authors of this paper analyzed all the 5923 commit messages related to
changes in the apps involving an upgrade of a GUI library: the author read each commit message
in order to elicit the reasons behind the high number of GUI-related upgrades. From this
analysis, we found several cases where the commit message associated to the version change
of a GUI library mentioned the willingness of developers to improve the layout of the GUL
An example is reported in the ZA.CO.LUKESTONEHM.LOGICALDEFENCE app, where we
discovered the following commit message:

“Update com.android.recyclerview-v7 to get new fancy icons.”

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2359

At the same time, libraries belonging to the category frameworks are often updated as well.
This is because most of the tools provided by such libraries support developers during their
activities, e.g., in the case of com.android. support, that provides APIs for upload-
ing/downloading files from a remote server. The high number of upgrades is motivated by
the fact that developers are enforced to upgrade them as new Android versions are released.
For instance, the com.android. support library mentioned above is constantly mod-
ified when new versions of the Android SDK are available: as a consequence, developers
need to perform upgrades in order to use the new supports provided. As an example, we
found that in the DE.GEEKSFACTORY.OPACCLIENT app, a developer upgraded the version
of com.android. support library, leaving the following commit message:

“Update android.support to have an environment equivalent to the android platform.”

All the other libraries whose version changes is high perform various tasks related to
the development of mobile apps and network management. However, the update of such
libraries is not common as the one of the libraries in the GUI and frameworks categories.
This result is in line with previous findings on the evolution of mobile apps. Specif-
ically, Zhang et al. (2013) demonstrated how during the evolution of mobile apps the
first Lehman’s law (i.e., continuous change Lehman and Belady 1985) holds for classes
belonging to the GUI, while other pieces of code are changed only if strictly needed.

Third-party libraries related to the graphical user interface or providing support tools for
development are the ones having the highest number of version changes in the mobile
apps using them. This may be mainly due to the will of developers to keep the GUI
always up to date with the latest graphical tendencies, or update Android support tools
to support the latest Android versions.

3.2.2 RQ,., - What Types of Third-Party Library Uses are Generally not Updated?

The version of almost 66.24% of libraries was declared and never updated by the developers
of the mobile apps in our dataset. This behavior is in line with the findings achieved so
far, since it shows once again that mobile developers are rarely interested in changing the
versions of the used libraries.

Looking at the Table 5, it is also possible to notice the categories of libraries for which
a version change was possible but whose version is less changed in the analyzed apps.
Although some of the libraries in these categories are quite diffused (e.g., Sensors), their
version is never changed. To elicit the likely causes behind missing updates, we performed
an additional analysis. In the first place, we automatically mined developers’ discussions
done through issue trackers and mailing lists for each of the subject apps. Then, we filtered
those discussions by applying regular expressions aimed at finding only the ones in which
there was a specific mention to the non-updated libraries. Finally, two of the authors of this
paper manually went over each discussion and analyzed it with the aim of extracting the
reasons for which a certain library was not updated. This manual analysis was done jointly
by the two authors, as in this way they could better discuss about the likely reasons for
non-updates.

From this analysis, we were able to discover two main reasons. In the first case, we
observed a number of cases where the developers discussed the possibility to update the

@ Springer

2360 Empirical Software Engineering (2020) 25:2341-2377

source code on their communication channels, concluding the discussion with ignoring the
update. For example, on October 2016 a new version of the j sonrpc library (Networking)
was available for the ORG.XBMC.KORE app. The developers discussed of the version change
on the issue tracker, mentioning potential security issues related to the use of HTTP GET
requests. Such discussion was ended by one of the developers in the following way:

“My 2 cents. This is an extreme case, and it doesn’t justify the upgrade of the library.”

After this comment, the issue was marked as “closed”. We found other similar examples
in the other apps analyzed, and thus we can conclude that one of the reasons behind miss-
ing version changes is that developers consciously ignore them. It is important to note that
our results do not contrast the findings reported by Derr et al. (2017), who found security
vulnerabilities to be a key motivation for developers to update their third-party libraries:
indeed, we complement those findings by reporting that, in some cases, developers con-
sciously decide not to perform an update because it would solve a problem that does not
frequently appear in the context of their app. This result also allows us to claim that more
empirical studies aimed at showing the impact of missing version change for the maintain-
ability and security aspects of the source code might be useful for making developers aware
of the negative consequences of ignoring the updates of libraries.

In the second case, we observed several cases where the developers refused an upgrade
because they considered the cost/benefit ratio too high. For instance, it is worth mentioning
the case of the UK.ORG.NGO.SQUEEZER app: here the version of the library eventBus
is never updated. On February 2016 a new version of the library was available, and the
two main developers of the app discussed, on the issue tracker of the application, about the
possibility to update the library. The analysis of pros and cons of the update ended with a
total agreement of the developer in not upgrading the used version of the library, since it
would require the modification of several classes and methods of the app. In particular, they
motivated their choice as follows:

“This would require more changes to the Squeezer code, so I don’t recommend
working from that.”

More in general, we discovered that the cost/benefit ratio leading to missing updates
is generally due to two specific problems. First, as highlighted in the example above, the
refactoring required to update a library implies the modification of a consistent part of
the codebase: this because of cascading dependencies that need to be updated if a main
one changes or because of a high usage of the library in the code, which makes the effort
to modify the codebase excessive to be performed. However, it is also true the opposite:
sometimes libraries affect a small portion of the code, and developers want to focus on
libraries having a higher impact on the codebase. All in all, both motivations shed lights
on an important research aspect worth of a deeper investigation in the future, i.e., making
techniques and tools available for (i) automatically or semi-automatically (Chow and Notkin
1996) updating dependencies, or (ii) effort-aware prioritization able to suggest developers
a list of library version to update based on the total amount of code to be modified as a
consequence of the update.

Most of the versions of the libraries are not updated. The most likely reason behind this
behavior seems to be the high cost/benefit ratio.

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2361

3.2.3 RQ 3 - What Types of Update Patterns Developers Follow When Updating
the Third-Party Libraries?

Even if most of the version changes of libraries are rarely or never updated, it is interest-
ing to understand if there are common update-patterns occurring when developers decide
to perform an upgrade of their external libraries. Table 6 reports the classification of the
update-patterns obtained as a result of the open coding procedure. As it is possible to see,
in 7.95% of cases, the version of a library was changed in a given version of the app and
then the use of the library disappeared in the immediately subsequent commit: we call this
pattern as “used once”. This category mainly refers to “abandoned” apps, i.e., apps that
are not developed anymore. A clear example is represented by the ormlite library of the
GRACECODE.ANDROID.PRESENTATION app, an app to manage image galleries. The library
version was changed in the commit performed on December 26™, 2014, which is exactly
the last commit on the repository.

As for the pattern called diligent, which is the one containing the cases where developers
constantly update the libraries, being always able to get the latest version of a library, we
found a total of 1976 uses that follow the “diligent” pattern, corresponding to the 15.52%
of the total libraries uses. These results seem to be in line with the findings discussed above
on the limited willingness of developers to update libraries.

The third update-pattern we classified is called “jump up”, and refers to cases where
developers missed several version changes of a library before deciding to perform an
upgrade toward a higher version of the library. Globally, we observed 1091 cases, which cor-
respond to 8.57% of the uses of libraries, follow this update-pattern. An interesting case is
the one of the COM.ANDROZIC app, where the library com.nispok. snackbar (whose
evolution is depicted in Fig. 5) has been firstly introduced in the app on December 2014,
when the version 2 . 7 . 1 was available. Then, during the evolution of the app, several newer
versions of the library became available, however the developers did not change the version
used until May 2015, when the current available version of the library was the 2.10.6.
Further, analyzing this specific case, we found that the developers performed the upgrade
only when the source code became not compatible anymore with the older version of the
library. Indeed, the developer performing the commit left this message:

“Fix compatibility issue by updating the build.gradle file.”

Another pattern recognized is named “jump down” that represents the opposite of the
Jjump up pattern described above. Indeed, it arises when developers decide to perform a
downgrade toward a much lower version of the library. We identified this pattern in only
39 cases. One of this cases refer to the ORG.CIPHERDYNE.FWKNOP2 app where the library
com.android. support :appcompat -v7 was introduced on June 2015 (see Fig. 6).

Table 6 Results of the open

coding procedure, showing the Pattern Number Percentage (%)
number of libraries uses for each
pattern Used once 1012 7.95

Diligent 1976 15.52

Jump up 1091 8.57

Jump down 39 0.30

Back & forth 181 1.42

Never changed 8435 66.24

@ Springer

Empirical Software Engineering (2020) 25:2341-2377

2362

Type -¢- Release —o- Use

(s}
UOISIOA

Date

Fig. 5 An example of jump up pattern, the com.nispok:snackbar library evolution for the

COM.ANDROZIC app

Type -*— Release —o— Use

23.0.0-

22.2.1-

22.2.0-

22.1.1-

22.1.0-

22.0.0-
21.0.3-
21.0.2-
21.0.0-
21.0.0-rc1 -

UoISION

20.0.0-

19.1.0-

Date

Fig. 6 An example of jump down pattern, the com.android.support :appcompat-v7 library

evolution for the ORG.CIPHERDYNE.FWKNOP2 app

pringer

f's

Empirical Software Engineering (2020) 25:2341-2377 2363

Immediately after the introduction of the version 22 .1 . 1, the library created compatibility
issues that enforced developers in downgrading the library toward the 19.0.0 version.
When committing the library downgrade, the developer left the following message:

“Downgraded dependency version due to compatibility issues with the fwknopd
service package.”

Finally, the last pattern is called “back & forth”. It refers to the cases in which
developers tried to upgrade the used version of a library several times, restoring each
time an older version. We observed this pattern in 181 cases, i.e., 1.42% of the library
version changes followed this pattern. A representative example is depicted in Fig. 7,
reporting the case of the library com.android. support:cardview-v7 of the app
ORG.DOLPHINEMU.DOLPHINEMU, a NINTENDO GAMECUBE simulator. As it is possible
to see, between May and September 2015 the developers of the app continuously upgraded
and downgraded the library. This was due to continuous issues that developers had with the
visualization of the cards representing the characters of the simulated games. In particular,
the developers experienced a different bug every time they tried to upgrade the library. One
of the comments left on July 2015 perfectly explains the types of difficulties developers
sometimes have to face:

“I'm getting crazy!!! I'm restoring the old version of that library hoping in good
times!”

This example clearly highlights how more research is needed to (i) provide automatic tools
for third-party libraries updates, and (ii) assess the impact of an update on the source code
of a mobile app.

Type - Release —o— Use

23.0.1-
23.0.0-
22.2.1-

22.2.0-

Version

22.1.1-

22.1.0-

22.0.0-

Date

Fig. 7 An example of back & forth pattern, the com.android.support:cardview-v7 library
evolution for the COM.DOLPHINEMU.DOLPHINEMU app

@ Springer

2364 Empirical Software Engineering (2020) 25:2341-2377

Finally, we noticed that in the remaining cases library uses are “never changed” after
their introduction; this occurs in 66.24% of cases.

With the goal of further analyzing the update patterns and their potential impact, we
conducted an additional experiment to understand if there are differences in the ratings
of the different update patterns identified. To this aim, we extracted the ratings associ-
ated to the user reviews of the considered apps; we developed a web scraper that extracts
the user reviews directly from the GOOGLE PLAY STORE, where they are publicly avail-
able. Afterwards, we followed the heuristics defined by Khalid et al. (2015) to discriminate
high- and low-rated apps. In particular, apps whose average ratings were strictly higher
than 3.5 were considered as high-rated, otherwise they were marked as low-rated. Once the
two sets were formed, we verified the distribution of each update pattern in the two app
types.

Figure 8 shows the distribution of each update pattern across the high- and low-rated apps
of our dataset. As it is possible to observe, we recognized the prevalence of two specific
update patterns, i.e., diligent (85% vs. 15%) and jump up (81% vs. 19%), in the high-rated
apps. On the contrary, back & forth (23% vs. 77%), jump down (30% vs. 70%), and used
once (27% vs. 73%) were more frequent in the low-rated apps. Interestingly, we observed
that the never changed pattern is almost equally distributed across the two sets, i.e., 45% in
case of high-rated apps and 55% for the low-rated ones.

These results suggest the existence of a relation between third-party library updates and
app ratings. Although several other factors might have influenced the results (e.g., app
domain, popularity, or source code quality (Catolino 2018; Palomba et al. 2018a)) and
despite the fact that we cannot speculate on the reasons behind them, we believe that our
findings provide initial hints of the importance that third-party libraries updates might have
for the commercial success of mobile apps. Of course, our analysis is only preliminary,
therefore this relation should be further investigated. At the same time, the results achieved
when considering the low-rated apps suggest that a poor management of libraries has a neg-
ative effect on the ratings provided by end users on the GOOGLE PLAY STORE: this might
be due to the inclusion of bugs and/or security issues inherited by the third-party libraries
(Bavota et al. 2015).

50% -

25% -

0% =
Used Once Diligent Jump Up Jump Down Back & Forth Never Changed

Fig.8 Distribution of each update pattern on high- and low-rated apps in our dataset

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2365

Developers follow peculiar update patterns when dealing with library updates. Only in
15.52% of the cases the used external libraries are constantly updated by developers,
while we found that in 66.24% of the cases external library uses are never changed after
their introduction. Our findings suggest a relationship between the update of third-party
libraries and the ratings assigned by end users on the store.

3.3 RQ; - What is the Developers’ Perception of Third-Party Libraries Updates?

In the previous research questions, we performed quantitative analyses by mining the soft-
ware repositories of the considered mobile applications. At the same time, we observed
the data to come up with some possible reasons behind the observed phenomena. Never-
theless, we could only provide hints on the reasons behind the developers’ decisions to
upgrade/downgrade libraries as opposed to facts. For this reason, in RQ3 we perform a
complementary study that aimed at surveying real Android developers on how they manage
third-party libraries. The following subsections report the achieved results.

3.3.1 RQs.1 — Do Developers Frequently Make Use of Third-Party Libraries When
Developing Mobile Apps?

In the first part of the questionnaire, we aimed at understanding whether the developers
are used to employ third-party libraries when developing mobile apps. Table 7 reports how
many participants replied with values ranging between minimum and maximum of the Lik-
ert scale to the first two questions of the survey; it is worth remarking that in the case of Q1.1
the Likert scale was nominal and comprised between “never” and “very frequently”, while
in Q1.2 between 1 and > 5. As it is possible to observe, none of the participants excluded
the use of libraries at all: 89% of developers stated that they make use of libraries frequently
or very frequently. 40% declared to have included more than 5 libraries for each app, while
only 5 of them (7%) declared a poorly usage of external dependencies. These results clearly
show that is very common for developers to rely on third-party libraries when developing
mobile apps. Thus, we can confirm that the developers’ perception of third-library usage
matches the quantitative findings revealed in the context of RQjq 1. Most of the developers
commented that the main reason behind the use of third-party libraries is the code reuse,
avoiding reinventing the wheel and save effort and time. Moreover, some of them recog-
nize that libraries reflect the experience of their developers, resulting in components that are
better maintained, tested, and designed.

Table 7 Results for RQ3 1 — For Q1.1 the Likert scale ranges between “never” and “very frequently”; for
Q1.2 between “1” and “> 57

Question Never Rarely Sometimes Frequently Very frequently

1 2 3 4 5 >5
Ql.1-Use 1 3 4 44 21 -
Q1.2 — Quantity 5 6 11 22 11 18

@ Springer

2366 Empirical Software Engineering (2020) 25:2341-2377

Developers make use of third-party libraries in mobile apps very often, mostly to save
effort and time, trusting the experience of developers of these libraries.

3.3.2 RQ3; - What is the Rationale Behind the Decisions of Mobile Developers When
Updating the Third-Party Libraries They Use for Their Mobile Apps?

In the second part of the questionnaire, we specifically investigated the behavior of devel-
opers in updating third-party libraries. Table 8 reports the results achieved when inquiring
developers. Also in this case, we report how many participants answered using each of the
five-level Likert scale.

From the analysis of the results, it emerged that 30% of developers upgrade libraries
very frequently, another 36% occasionally, and only 7% rarely. Nobody excluded upgrading
completely. We also asked about the opposite action, i.e., downgrading. The results show
that the majority of them (66%) never or very rarely performed an activity of downgrading
the version of a third-party library, while 27% of them stated that it happened at least once.
The developers commented that it is usually due to incompatibility with the current version
of the app, often making the app failing already during the build task. For those who tested
the app after the upgrade, it happened that some found conflicts with other dependencies or
unexpected bugs never experienced before.

Then, we asked developers to which types of library they are mostly attentive in updating.
Thus, we were able to compare the direct developers’ perception and experience with the
ranks we automatically extracted in the context of RQ; 1 and RQ, ; (see Sections 3.2.1 and
3.2.2). The developers confirmed that GUI libraries are the most upgraded, followed by
those that ease the interaction with external services, e.g., networking.

More interesting is the report about the reasons why they perform or not updates. On the
one hand, they mostly keep libraries up-to-date to reduce propagation of bugs from depen-
dencies, possibly improving app performance. Moreover, new releases of Android often
cause incompatibility with previous implementations, affecting both app and dependencies
source code. Sometimes, it means that it is not possible to make an app compatible with
the most recent version of Android if all the used libraries are not compatible. One of the
participants declared:

“Usually to stop Android Studio from nagging ;). Mostly because Google advises to
upgrade the support libs whenever you update the target SDK.”

S/he refers to the fact that ANDROID STUDIO, as the official Integrated Development Envi-
ronment (IDE) for Android development, warns the developers on whether new versions of

Table 8 Results for RQj3,

Question Never Rarely Sometimes Frequently Very frequently
Q2.1 - Upgrade frequency 0 5 26 20 22

Q2.2 — Downgrade frequency 17 31 20 5 0

Q2.10 — App testing 0 5 7 24 37

Q2.11 — Users’ feedback 34 12 10 8 9

Q2.13 — Security issues 2 7 7 24 33

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2367

libraries used in a project are available. Furthermore, it is a best practice advised by Google
to keep official support libs whenever there is an upgrade for the Android SDK.

On the other hand, they avoid updates mostly because they are afraid of breaking the
current version of the app, as declared by one of the participants:

“If things are working, don’t break them!”

Most of the participants pointed out that often an upgrade does not correspond to a simple
rebuild of the app, according to their experience. Moreover, they tend to avoid change things
if themselves, or their users, did not experience issues. When asking whether they include
a testing activity every time they introduce a new version of a third-party library, 51% of
them reported how they always test the app after that, possibly highlighting that testing
API modifications would represent a research direction to further investigate. Furthermore,
47% of the respondents claimed that receiving requests from users complaining about issues
clearly attributable to the use of certain libraries is not common, therefore, the inner-working
of third-party libraries can somehow be hidden to the final users.

We also asked if they generally take into consideration the effort required to update a
library and how they estimate it. One of them commented:

“Usually if you update them regularly (e.g. weekly) it’s minimal effort, like less than
30 minutes per week (or even much less, like 5-10 minutes).”

The reported consideration is common also for other developers:

“Yes. If the update is a major version it usually means it’s going to be more difficult
to upgrade.”

These considerations seems to go in the direction of what we qualitatively discovered in
RQ;,, i.e., if a developer does not update third-party libraries frequently, the effort required
to perform such an update might be not worth the gain it provides. This result confirm the
results previously obtained by Kula et al. (2017) who showed that the “migration effort” is
one of the main reasons that prevent library updates. One of the developers also mentioned
the “technical debt” (Kruchten et al. 2012):

“It’s seen as good ‘health’ to do it regularly, to reduce technical debt”

In other words, it is a common feeling that having an app with up-to-date libraries reduce
accumulating future effort, which may be traduced in some form of technical debt.

Finally, we investigated about the introduction of possible security issues when updating:
45% of the participants declared that they always take into consideration the possibility of
such an introduction. Interestingly, only 29% even performed a downgrade due to a security
issue.

Developers upgrade third-party libraries in mobile apps frequently, but the opposite
action of downgrading is less common. GUI libraries are the most upgraded third-party
components. The main reasons for keeping the libraries up-to-date are (i) avoiding the
propagation of bugs, (ii) making the app compatible with new Android releases.

@ Springer

2368 Empirical Software Engineering (2020) 25:2341-2377

4 Threats to Validity
This section describes the threats that may have affected the validity of the study.

Construct Validity Threats in this category are mainly related to the effectiveness of the
tools built in order to mine data from the different software repositories analyzed. Before
employing the tools, we carefully tested them against a sample set of mobile apps com-
ing from the F-DROID repository. Moreover, we made all the tools publicly available for
replication purposes (Salza et al. 2019).

Conclusion Validity Threats to conclusion validity concern the relation between the treat-
ment and the outcome. In RQy ,, we computed the technical lag on the basis of the definition
previously provided by Zerouali et al. (2019). Nevertheless, we cannot exclude the presence
of other alternative more effective methods to define such a technical lag. Still, in this con-
text, we estimated the technical debt using days as time unit: while it may be possible that
our findings might change based on the amount of activities performed by developers (e.g.,
commit), it is important to note that the selected apps are active and perform continuous
activities of software maintenance and evolution.

In the context of RQ, 3 we adopted an open coding procedure to identify the common
update-patterns followed by mobile developers. This procedure involved the authors, who
firstly independently classified a part of the libraries histories considered in this study, and
then were involved in an open discussion with the aim of double-checking the previous
classifications. Still, we cannot exclude imprecision and/or some degree of subjectivity,
even if mitigated through the discussion.

Another threat in this category is represented by the presence of abandoned apps, which
might have influenced the achieved results. Detecting abandoned apps represents a difficult
problem, especially because it is hard to distinguish these apps from those that have com-
pleted their features and do not require further maintenance (Khondhu et al. 2013); more
importantly, while some identification heuristics have been proposed so far, none of them
are fully tested and reliable (Khondhu et al. 2013; Coelho and Valente 2017). This is the
reason why we did not consider this aspect in our study. However, the large scale nature of
our empirical study substantially increased the ecological validity of our results. Moreover,
our dataset is mostly composed of real-world apps that are active on the GOOGLE PLAY
store (Geiger et al. 2018; Pascarella et al. 2018). As a consequence, we reduced the likeli-
hood to consider abandoned apps. In other words, while we cannot exclude the presence of
abandoned apps in our dataset, their influence on the results are limited by the size of the
empirical study.

In RQ, 3 there might have been other factors related to the success of the apps presenting
the update patterns investigated as well as other factors influencing the trends followed to
update libraries, e.g. size or activity of the considered projects. However, our large-scale
analysis mitigates interpretation bias, as it enables a good ecological validity of the results.

External Validity Threats to external validity concern the generalization of results. Part of
the 2752 apps that compose our framework, is coming from the F-DROID repository. The set
of 291 apps represents a 95% statistically significant stratified sample with a 5% confidence
interval of the 1181 apps, available at the time of mining on F-DROID, having more than 1
third-party library. Despite this, we are aware that we considered Android open-source apps

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2369

only. Commercial apps, as well as the apps coming from other distribution platforms should
be analyzed to corroborate our findings. Finally, in our survey study (RQ3 1 and RQj3,), we
collected opinions from 73 mobile developers of the considered apps. While this number
cannot ensure the generalization of our findings, we still believe that the considered answers
provide a valuable source to understand what developers think about third-party libraries.
However, also in this case, further replications would be desirable.

5 Related Work

The phenomenon of third-party libraries version changes (i.e., change propagation or ripple
effect) is a topic that has been studied in the context of both desktop applications (Dig and
Johnson 2006; Mileva et al. 2009; Lammel et al. 2011; Robbes et al. 2012; Raemaekers
et al. 2012; Bauer et al. 2012) and mobile apps (Linares-Vésquez et al. 2014, Mojica Ruiz
et al. 2012, 2014; Martin et al. 2017). At the same time, the research community devoted
effort in understanding the effects of updates on non-functional attributes of source code
(e.g., fault-proneness Linares-Vasquez et al. 2013).

5.1 Third-Party Libraries Usage in Mobile Apps

Mobile apps differ from traditionally studied applications (Minelli and Lanza 2013b; Syer
et al. 2013). Thus, most of the previous empirical studies conducted on third-party libraries
in desktop applications usage have been revised.

Linares-Vasquez et al. (2014) decompiled and analyzed 24379 Android Application
Packages (APKs) from the Google Play Store, discovering that in 82% of the cases third-
party libraries were used. Mojica Ruiz et al. (2012) studied code reuse in 4323 Android
apps extracted from 5 categories of the Google Play Store, finding that 61% of all classes
in each category of mobile apps occur in 2 or more apps, and 217 mobile apps are reused
completely by another mobile app in the same category. Their study was estended (Mojica
Ruiz et al. 2014) by considering 208601 apps, confirming the previous findings. Similar
results were obtained by Minelli and Lanza (2013a, b) and Viennot et al. (2014). Our study
builds on the line of research investigated in the aforementioned studies and extends the
empirical knowledge of the research community on how and why mobile developers update
third-party libraries: besides assessing the extent of their usage, we also conduct further
experiments to understand what are the typical update patters used by developers and the
reasons behind the decisions of updating (or not) a third-party library.

Azad (2015) proposed a new tool able to analyze the APIs usage and suggest similar APIs
based on STACK OVERFLOW discussions. Borges and Valente (2015) applied association
rule mining to learn an API usage model. To this aim, they extended APIMINER (Montan-
don et al. 2013) to collect usage patterns and APIs documentation and validated the obtained
patterns. Backes et al. (2016) proposed a library detection technique that is resilient against
common code obfuscation techniques and that is capable to identify the library version used
in apps. While this set of papers proposed techniques to support developers when dealing
with third-party library, our study presents empirical results that can be exploited by such
techniques to provide developers with improved recommendations: for instance, the find-
ings on the libraries that are more/less prone to be updated can lead to the definition of novel
prioritization techniques that recommend APIs usage and update.

@ Springer

2370 Empirical Software Engineering (2020) 25:2341-2377

5.2 Effects of Third-Party Libraries on Mobile Apps

Linares-Vasquez et al. (2013) analyzed the effect of the change- and fault-proneness of
Google APIs on the commercial success of mobile apps, discovering that apps having low
ratings tend to use change- and fault-prone APIs. Such correlation has been confirmed by
45 Android developers (Bavota et al. 2015). According to these findings, Linares-Vasquez
(2014) proposed an API recommendation system able to avoid the introduction of defects.
Tian et al. (2015) extracted APIs information and evaluated 1492 apps in terms of 28 factors
along eight dimensions to understand how high-rated apps are different from low-rated
apps. They found that size, number of images included in the web store page, and target
SDK version are the most influential factors. Third party libraries also impact the apps
security. Dering and McDaniel (2014) analyzed libraries and permissions of 450000 free
apps, finding a strong correlation between the number of external libraries used in the apps
and the number of requested permissions. Derr et al. (2017) performed an empirical study
on third-party library updatability over 1264118 Android applications: the main result of
their study highlighted that (i) most of the libraries can be upgraded without modifying the
source code, and (ii) almost 98% of actively used library versions affected by a security
vulnerability can be fixed with a library update. Our study enhances the state of the art in this
direction by providing a preliminary evidence of the impact of third-party library updates
on the commercial success of mobile applications. As such, our findings are complementary
with respect to those reported so far.

Seneviratne et al. (2015) analyzed the differences between free and paid apps. They
discovered that both free and paid apps collect personal information. Moreover, the authors
showed that 20% of the apps were connected to more than three trackers, and that 50%
of users are exposed to 25% trackers. The analysis of the libraries history of the top apps
on Google Play Store is part of the work by Backes et al. (2016). Their results showed
that app developers slowly adapt new library versions, exposing their end-users to large
windows of vulnerability. Finally, Mojica Ruiz et al. (2016) focused their attention on the
impact of library version changes on development effort. The results showed that almost
half of the apps underwent the ads library. Also in this case, our results confirm some of the
observations reported in previous studies. For example, we have observed that one reason
leading developers not to update libraries is excessive refactoring effort, as shown by Mojica
Ruiz et al. (2016); similarly, our findings on technical lag are perfectly in line with those
reported by Backes et al. (2016).

6 Conclusions and Future Work

In this paper we reported on an empirical investigation on when, how, and why mobile
developers update third-party libraries in their code. We mined the evolution history of 2752
open-source applications to study the problem. Firstly, we studied whether mobile develop-
ers perform external libraries version changes as well as what is the technical lag occurring
at app- and dependency-level. Secondly, we identified which categories of used libraries
developers are more or less prone to update in their apps; we also extracted the common
patterns followed by mobile developers to update third-party libraries and investigated the
distribution of such update patters in high- and low-rated apps. Finally, we surveyed 73
mobile developers in order to collect their opinions on third-party libraries updates, and
particularly on the motivations behind their decisions to update or not. The results indicate
that:

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2371

1. developers rarely update the used version of third-party libraries in mobile apps, i.e.,
only 1% of commits are related to a version change;

2. most of the apps have a high technical lag and its evolution is linearly increasing over
time;

3. most version changes are usually an upgrade to a newer version, however if an upgrade
introduces an issue, a downgrade is performed;

4. the version of libraries related to graphical user interface or support tools are more
likely to be updated;

5. only 15.52% of library uses are constantly updated by developers;

6. in 66.24% of the cases the authors do not update the versions of used libraries after
their introduction;

7. 85% of diligent update patterns are done on high-rated apps, while low-rated apps
present 73% of the used once patterns;

8. according to the surveyed developers, most of the updates are done with the aim of
avoiding bug propagation or making an app compatible with the Android releases;

9. our participants explained that some libraries are never updated because of high
cost/benefit ratio or to not break existing code.

These results have a number of implications for the research community, tool vendors,
and practitioners:

— More empirical research is needed. A key finding of our study is related to the
low frequency of third-party library updates, sometimes dictated by the willingness
of developers to not break existing functionalities. This recalls the need for empirical
studies able to show the (negative) impact of missing updates on functional and non-
functional properties of the source code, so that developers may acquire knowledge
on the topic and be more aware of the possible consequences that the choice of non-
updating libraries has. Similarly, further research is needed to investigate the causality
of the relation between libraries updates and ratings assigned by end users.

— Enabling automatic support. One of the main challenges that both researchers and
tool vendors should face is concerned with providing automatic support for third-party
library updates. This includes the creation of auto-update systems or notification me-
chanisms allowing developers to know about the existence of a new version of a library.

— Prioritizing update effort. Our findings suggest that a high cost/benefit ratio discour-
age developers in updating third-party libraries. Thus, devising methodologies and tools
able to properly capture how complex an update will be might help developers in the
decision-making process, ranking the update opportunities accordingly.

— Predicting trends and impact on source code. We were able to discover specific
trends in the way developers update third-party libraries. As each of them has its own
peculiarities, researchers might exploit this information in order to create prediction
models able to preventively alert developers of the potential impact of missing updates
on non-functional attributes of source code.

These findings and implications represent the main input for our future research agenda,
mainly focused on designing and developing new techniques and tools able to automati-
cally identify opportunities of version change, and apply them flawlessly. Moreover, we
plan to extend the empirical study to proprietary and larger applications, with a particular
focus on the relationship between user ratings and third-party library updates. Finally, we
plan to investigate the impact of the developers’ behavior looking in particular at security
vulnerabilities, as already done in the traditional context (Kula et al. 2017).

@ Springer

2372 Empirical Software Engineering (2020) 25:2341-2377

Acknowledgments The authors would like to thank the Associate Editor and anonymous reviewers for
the constructive feedback that has been instrumental to improve the quality of our work. Fabio Palomba
gratefully acknowledges the support of the Swiss National Science Foundation through the SNF Project No.
PP00P2_170529. Dario Di Nucci is partially supported by the Excellence of Science Project SECO-Assist
(0015718F, FWO-Vlaanderen and F.R.S.-FNRS).

References

Antoine JY, Villaneau J, Lefeuvre A (2014) Weighted Krippendorff’s alpha is a more reliable metrics for
multi-coders ordinal annotations: experimental studies on emotion, opinion and coreference annotation.
In: European chapter of the association for computational linguistics (EACL), pp 550-559

Azad SA (2015) Empirical studies of android API usage: suggesting related API calls and detecting license
violations. PhD thesis, Concordia University

Backes M, Bugiel S, Derr E (2016) Reliable third-party library detection in android and its security
applications. In: ACM Conference on computer and communications security (CCS), pp 356-367

Bauer V, Heinemann L, Deissenboeck F (2012) A structured approach to assess third-party library usage. In:
IEEE international conference on software maintenance (ICSM), pp 483-492

Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Di Penta M, Oliveto R, Poshyvanyk D (2015) The
impact of API change- and fault-proneness on the user ratings of android Apps. IEEE Trans Softw Eng
41(4):384-407

Black S (2001) Computing ripple effect for software maintenance. J Softw Maintenance 13(4):263-279

Borges HS, Valente MT (2015) Mining usage patterns for the android API. Peer] Comput Sci 1:e12

Catolino G (2018) Does source code quality reflect the ratings of Apps? In: IEEE/ACM International
conference on mobile software engineering and systems (MOBILESoft), pp 43—44

Chen N, Lin J, Hoi SC, Xiao X, Zhang B (2014) AR-miner: mining informative reviews for developers from
mobile App marketplace. In: IEEE/ACM International conference on software engineering (ICSE), pp
767-778

Chow K, Notkin D (1996) Semi-automatic update of applications in response to library changes. In:
International conference on software maintenance (ICSM), pp 359-368

Coelho J, Valente MT (2017) Why modern open source projects fail. In: ACM Joint European software
engineering conference and symposium on the foundations of software engineering (ESEC/FSE), pp
186-196

Decan A, Mens T, Constantinou E (2018) On the evolution of technical lag in the npm package dependency
network. In: IEEE International conference on software maintenance and evolution (ICSME), pp 404—
414

Dering ML, McDaniel P (2014) Android market reconstruction and analysis. In: IEEE Military communica-
tions conference (MILCOM), pp 300-305

Derr E, Bugiel S, Fahl S, Acar Y, Backes M (2017) Keep me updated: an empirical study of third-party
library updatability on android. In: ACM SIGSAC conference on computer and communications security
(CCS), pp 2187-2200

Dig D, Johnson R (2006) How do APIs evolve? A story of refactoring. J Softw Maint Evol Res Pract
18(2):83-107

Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your App: making sense of user
feedback in a mobile App store. In: ACM SIGKDD conference on knowledge discovery and data mining
(KDD), pp 1276-1284

Geiger FX, Malavolta I, Pascarella L, Palomba F, Di Nucci D, Bacchelli A (2018) A graph-based dataset
of commit history of real-world android Apps. In: IEEE Working conference on mining software
repositories (MSR), pp 30-33

Given LM (2008) The sage encyclopedia of qualitative research methods. Sage Publications

Grandcolas U, Rettie R, Marusenko K (2003) Web survey bias: sample or mode effect? J Mark Manag
19(5-6):541-561

Grano G, Ciurumelea A, Panichella S, Palomba F, Gall HC (2018) Exploring the integration of user feedback
in automated testing of android applications. In: IEEE International conference on software analysis,
evolution and reengineering (SANER)

Gwet KL (2014) Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement
among raters. Advanced Analytics

Haney FM (1972) Module connection analysis: a tool for scheduling software debugging activities. In: Fall
joint computer conference, pp 173-179

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2373

Hou D, Yao X (2011) Exploring the intent behind Api evolution: a case study. In: Working conference on
reverse engineering (WCRE), pp 131-140

Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in mobile App development. In: ACM/IEEE
International symposium on empirical software engineering and measurement (ESEM), pp 15-24

Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile App users complain about? IEEE
Softw 32(3):70-77

Khandkar SH (2009) Open coding. Tech. rep., University of Calgary

Khondhu J, Capiluppi A, Stol KJ (2013) Is it all lost? A study of inactive open source projects. In: IFIP
international conference on open source systems, pp 61-79

Kirubakaran B, Karthikeyani V (2013) Mobile application testing: challenges and solution approach through
automation. In: International conference on pattern recognition, informatics and mobile engineering
(PRIME), pp 79-84

Krippendorff K (2004) Content analysis: an introduction to its methodology, 2nd edn. Sage Publications

Krippendorff K (2011) Computing Krippendorff’s alpha-reliability. Tech. rep., University of Pennsylvania

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: from metaphor to theory and practice. IEEE Softw
29(6):18-21

Krutz DE, Mirakhorli M, Malachowsky SA, Ruiz A, Peterson J, Filipski A, Smith J (2015) A dataset of
open-source android applications. In: IEEE working conference on mining software repositories (MSR),
pp 522-525

Kula RG, German DM, Ouni A, Ishio T, Inoue K (2017) Do developers update their library dependencies?
Empir Softw Eng, 1-34

Lammel R, Pek E, Starek J (2011) Large-scale, AST-based API-usage analysis of open-source java projects.
In: ACM/SIGAPP symposium on applied computing (SAC), pp 1317-1324

Lehman MM, Belady LA (eds) (1985) Program Evolution: Processes of Software Change. Academic Press
Professional, Cambridge

Linares-Vasquez M (2014) Supporting evolution and maintenance of android Apps. In: Doctoral symposium
of IEEE/ACM international conference on software engineering (ICSE), pp 714-717

Linares-Vasquez M, Bavota G, Bernal-Cardenas C, Di Penta M, Oliveto R, Poshyvanyk D (2013) API
change and fault proneness: a threat to the success of android Apps. In: ACM Joint European software
engineering conference and symposium on the foundations of software engineering (ESEC/FSE), pp
477-487

Linares-Vasquez M, Holtzhauer A, Bernal-Cardenas C, Poshyvanyk D (2014) Revisiting android reuse stud-
ies in the context of code obfuscation and library usages. In: IEEE Working conference on mining
software repositories (MSR), pp 242-251

Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of App store analysis for software
engineering. IEEE Trans Softw Eng 43(9):817-847

Mileva YM, Dallmeier V, Burger M, Zeller A (2009) Mining trends of library usage. In: International work-
shop on principles of software evolution and annual workshop on software evolution IWPSE/EVOL),
pp 57-62

Minelli R, Lanza M (2013a) SAMOA: a visual software analytics platform for mobile applications. In: IEEE
International conference on software maintenance (ICSM), pp 476-479

Minelli R, Lanza M (2013b) Software analytics for mobile applications: insights & lessons learned. In:
European conference on software maintenance and reengineering (CSMR), pp 144-153

Mojica Ruiz 1J, Nagappan M, Adams B, Hassan AE (2012) Understanding reuse in the android market. In:
IEEE International conference on program comprehension (ICPC), pp 113-122

Mojica Ruiz IJ, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE (2014) A large-scale empirical study
on software reuse in mobile Apps. IEEE Softw 31(2):78-86

Mojica Ruiz 1J, Nagappan M, Adams B, Berger T, Dienst S, Hassan AE (2016) Analyzing Ad library updates
in android Apps. IEEE Softw 33(2):74-80

Montandon JE, Borges H, Felix D, Valente MT (2013) Documenting APIs with examples: lessons learned
with the APIMiner platform. In: Working conference on reverse engineering (WCRE), pp 401-408

Muccini H, Di Francesco A, Esposito P (2012) Software testing of mobile applications: challenges and future
research directions. In: International workshop on automation of software test (AST), pp 29-35

Nickerson RS (1998) Confirmation bias: a ubiquitous phenomenon in many guises. Rev Gen Psychol
2(2):175-220

Pagano D, Maalej W (2013) User feedback in the Appstore: an empirical study. In: IEEE International
requirements engineering conference (RE), pp 125-134

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they really smell bad? A study on
developers’ perception of bad code smells. In: IEEE International conference on software maintenance
and evolution ICSME), pp 101-110

@ Springer

2374 Empirical Software Engineering (2020) 25:2341-2377

Palomba F, Salza P, Ciurumelea A, Panichella S, Gall H, Ferrucci F, De Lucia A (2017) Recommending
and localizing change requests for mobile Apps based on user reviews. In: IEEE/ACM International
conference on software engineering (ICSE), pp 106-117

Palomba F, Linares-Vasquez M, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2018a)
Crowdsourcing user reviews, to support the evolution of mobile Apps. J Syst Softw 137:143-162

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2018b) The scent of a smell: an extensive
comparison between textual and structural smells. IEEE Trans Softw Eng 44:10

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code smells on the
energy consumption of mobile applications. Inf Softw Technol 105:43-55

Pascarella L, Geiger FX, Palomba F, Di Nucci D, Malavolta I, Bacchelli A (2018) Self-reported activities
of android developers. In: IEEE/ACM International conference on mobile software engineering and
systems (MOBILESoft), pp 144-155

Raemaekers S, van Deursen A, Visser J (2012) Measuring software library stability through historical version
analysis. In: IEEE International conference on software maintenance (ICSM), pp 378-387

Robbes R, Lungu M, Réthlisberger D (2012) How do developers react to API deprecation? The case of
a smalltalk ecosystem. In: ACM SIGSOFT international symposium on the foundations of software
engineering (FSE), p 56

Salza P, Palomba F, Di Nucci D, D’Uva C, De Lucia A, Ferrucci F (2018) Do Developers update third-party
libraries in mobile Apps? In: IEEE/ACM International conference on program comprehension (ICPC),
pp 255-265

Salza P, Palomba F, Di Nucci D, De Lucia A, Ferrucci F (2019) Third-party libraries in mobile Apps: when,
how, and why developers update them - appendix. https://doi.org/10.6084/m9.figshare.936634 1

Scalabrino S, Bavota G, Russo B, Oliveto R, Di Penta M (2017) Listening to the crowd for the release
planning of mobile Apps. IEEE Trans Softw Eng, 68—-86

Seneviratne S, Kolamunna H, Seneviratne A (2015) A measurement study of tracking in paid mobile
applications. In: ACM Conference on security & privacy in wireless and mobile networks (WiSec), p 7

Sommerville I (2006) Software engineering. Addison-Wesley

Strauss A, Corbin J (1998) Basics of qualitative research techniques. Sage Publications

Syer MD, Nagappan M, Hassan AE, Adams B (2013) Revisiting prior empirical findings for mobile Apps:
an empirical case study on the 15 most popular open-source android Apps. In: Conference of the center
for advanced studies on collaborative research (CASCON), pp 283-297

Tian Y, Nagappan M, Lo D, Hassan AE (2015) What are the characteristics of high-rated Apps? A case study
on free android applications. In: IEEE International conference on software maintenance and evolution
(ICSME), pp 301-310

Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC (2018) Context is King: the developer
perspective on the usage of static analysis tools. In: IEEE International conference on software analysis,
evolution and reengineering (SANER), pp 3849

Viennot N, Garcia E, Nieh J (2014) A measurement study of Google Play. ACM SIGMETRICS Perform
Evalu Rev 42:221-233

Yau SS, Collofello JS, MacGregor TM (1993) Ripple effect analysis of software maintenance. In: Shepperd
M (ed) Software engineering metrics I: measures and validations, pp 71-82

Zerouali A, Constantinou E, Mens T, Robles G, Gonzalez-Barahona J (2018) An empirical analysis of tech-
nical lag in Npm package dependencies. In: International conference on software reuse (ICSR), pp
95-110

Zerouali A, Mens T, Gonzalez-Barahona J, Decan A, Constantinou E, Robles GA (2019) Formal framework
for measuring technical lag in component repositories and its application to NPM. Journal of Software:
Evolution and Process, 2157

Zhang J, Sagar S, Shihab E (2013) The evolution of mobile Apps: an exploratory study. In: International
workshop on software development lifecycle for mobile (DeMobile), pp 1-8

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.6084/m9.figshare.9366341

Empirical Software Engineering (2020) 25:2341-2377 2375

Pasquale Salza is a Senior Research Associate at the University of Zurich, Switzerland. He received his
Ph.D. degree in Computer Science from the University of Salerno, Italy, in 2017. His research interests
are mainly focused on software engineering, cloud computing, evolutionary computation, machine learning,
and mobile computing, with the aim of efficiently joining solutions and approaches to improve information
technology systems and supply software solutions of better quality, cost-effectively.

Fabio Palomba is a Senior Research Associate at the University of Zurich, Switzerland. He received the
European PhD degree in Management & Information Technology in 2017. His PhD Thesis was the recip-
ient of the 2017 IEEE Computer Society Best PhD Thesis Award. His research interests include software
maintenance and evolution, empirical software engineering, source code quality, and mining software repos-
itories. He was the recipient of two ACM/SIGSOFT and one IEEE/TCSE Distinguished Paper Awards at
ASE’13, ICSE’15, and ICSME’17, respectively, and Best Paper Awards at CSCW’18 and SANER’18. He
serves and has served as a program committee member of various international conferences (e.g., MSR,
ICPC, ICSME), and as referee for various international journals (e.g., TSE, EMSE, JSS) in the field of soft-
ware engineering. He has been a member of the organising committee of ICPC 2015 and SANER 2018, and
program committee co-chair of MaLTeSQuE 2018 and 2019. Since 2016 he is Review Board Member of
EMSE and, since 2019, Editorial Board Member of TOSEM, JSS, and SCP. He was the recipient of several
Distinguished/Outstanding Reviewer Awards for his reviewing activities conducted for EMSE, IST, and JSS
between 2015 and 2019.

@ Springer

2376 Empirical Software Engineering (2020) 25:2341-2377

Dario Di Nucci is a research fellow at the Software Languages Lab of the Vrije Universiteit Brussel in
Belgium. He received the Ph.D. in Management and Information Technology from the University of Salerno
in 2018 advised by Prof. Andrea De Lucia with a thesis entitled “Methods and Tools for Focusing and
Prioritizing the Testing Effort”. His research is on empirical software engineering, in particular software
maintenance and evolution and software testing. To this aim, he applies several techniques such as machine
learning, search based algorithms, and static analysis of source code. He serves and has served as a program
committee member of various international conferences (e.g., ESEC/FSE, ICSME), and as referee for various
international journals in the field of software engineering (e.g., TSE, EMSE, JSS) and artificial intelligence
(e.g., TKDE, Neurocomputing).

Andrea De Lucia received the Laurea degree in computer science from the University of Salerno, Italy, in
1991, the M.Sc. degree in computer science from the University of Durham, U.K., in 1996, and the Ph.D.
degree in electronic engineering and computer science from the University of Naples Federico II, Italy, in
1996. He is a Full Professor of software engineering at the Department of Computer Science of the University
of Salerno, the coordinator of the PhD program in Computer Science, the Head of the Software Engineer-
ing Lab, and the Director of the International Summer School on Software Engineering. Previously he was
at the Department of Engineering and the Research Centre on Software Technology of the University of
Sannio, Italy. His research interests include software maintenance and testing, reverse engineering and re-
engineering, source code analysis, code smell detection and refactoring, mining software repositories, defect
prediction, empirical software engineering, search-based software engineering, traceability management, col-
laborative development, workflow and document management, and visual languages. He has published more
than 250 papers on these topics in international journals, books, and conference proceedings and has edited
books and journal special issues. Prof. De Lucia serves on the editorial boards of international journals and
on the organizing and program committees of several international conferences. He is a senior member of
the IEEE and was member-at-large of the executive committee of the IEEE Technical Council on Software
Engineering.

@ Springer

Empirical Software Engineering (2020) 25:2341-2377 2377

Vs ST, i /
Filomena Ferrucci is professor of software engineering and software project management at University of
Salerno, Italy. Her main research interests include software metrics, effort estimation, search-based software

engineering, empirical software engineering, and human-computer interaction. She has been program co-
chair of the International Summer School on Software Engineering.

Affiliations

Pasquale Salza' @ . Fabio Palomba’ - Dario Di Nucci? - Andrea De Lucia3 -
Filomena Ferrucci?

Fabio Palomba
palomba@ifi.uzh.ch

Dario Di Nucci
dario.di.nucci@vub.be

Andrea De Lucia
adelucia@unisa.it

Filomena Ferrucci
fferrucci @unisa.it

University of Zurich, Zurich, Switzerland
Vrije Universiteit Brussel, Brussels, Belgium

University of Salerno, Fisciano, Italy

@ Springer

http://orcid.org/0000-0002-8687-052X
mailto: palomba@ifi.uzh.ch
mailto: dario.di.nucci@vub.be
mailto: adelucia@unisa.it
mailto: fferrucci@unisa.it

	Third-party libraries in mobile apps
	Abstract
	Introduction
	Replication Package
	Structure of the Paper

	Empirical Study Design
	Research Questions
	Context Selection
	Mobile Apps
	Recruitment of Developers

	Data Mining Process
	Methodology and Analysis Method
	Technical Lag Methodology (RQ1)
	Apps History Analysis Methodology (RQ2)
	Developers' Surveying Methodology (RQ3)

	Results
	RQ1 – When Do developers Update Third-Party Libraries?
	RQ1.1 – To What Extent Mobile Developers Update the Version of Used Third-Party Libraries?
	RQ1.2 – What is the Technical Lag of Mobile Applications?

	RQ2 – How do developers update third-party libraries?
	RQ2.1 – What Types of Third-Party Library Uses are More Prone to be Updated?
	RQ2.2 – What Types of Third-Party Library Uses are Generally not Updated?
	RQ2.3 – What Types of Update Patterns Developers Follow When Updating the Third-Party Libraries?

	RQ3 – What is the Developers' Perception of Third-Party Libraries Updates?
	RQ3.1 – Do Developers Frequently Make Use of Third-Party Libraries When Developing Mobile Apps?
	RQ3.2 – What is the Rationale Behind the Decisions of Mobile Developers When Updating the Third-Party Libraries They Use for Their Mobile Apps?

	Threats to Validity
	Construct Validity
	Conclusion Validity
	External Validity

	Related Work
	Third-Party Libraries Usage in Mobile Apps
	Effects of Third-Party Libraries on Mobile Apps

	Conclusions and Future Work
	References
	Affiliations

