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ABSTRACT

We present cCube, an open source architecture used to automati-
cally create an application of one or more Evolutionary Machine
Learning (EML) classification algorithms that can be deployed to
the cloud with automatic data factorization, training, result filtering
and fusion. cCube enables automated EML classification algorithms
comparison, competition and multi-party collaboration. It can be
used by an algorithm developer, a community working together or
a black box user of EML classification. It requires minimal extra
code to cloud-scale shared-memory implementations. It employs
a microservices architecture and software containers into which
user code is integrated allowing to access to the full benefits of
cloud computing, e.g., on demand and elastic computing, while not
committing (code or patronage) to a specific cloud provider such
as Amazon Web Services or OpenStack. We demonstrate cCube,
straddling our application across two different cloud providers and
replicate the collaborative activity at zero cost.
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1 INTRODUCTION

Evolutionary Machine Learning (EML) is a prolific research field
and new algorithms are continually being developed. Progress as it
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occurs in any scientific community involves 3 activities: (1) compar-
ison, new methods are compared to existing ones, (2) competition,
from comparison, a state of art arises, and (3) collaboration, because
of trade-offs in methods, after comparison it is often advantageous
to combine algorithms for a collaborative result, e.g., generate an
ensemble model [14]. Elements (1) and (2) are essential whereas
(3) is desirable. Indeed, the challenge of collaboration is an im-
pediment to the software design, implementation and accessibility.
Comparison requires the coordination of other EML algorithms,
not always personally developed, in being set up, in running large
number of experiments using many resources, and in lasting a long
duration. Large datasets imply that the EML developer often uses a
personal shared-memory computer to develop an EML algorithm
that, once accurate and fast enough on a subsample of the data, has
to next be deployed at scale. Scaling requires complex provision-
ing on distributed computational units, e.g., creating a commercial
cloud account on Amazon Web Services! (AWS), setting up the au-
thorization keys, data flow management, console-based resource
administration, distributed experiment setup, results collection,
compilation, etc.

An existing solution toward making disciplined and scalable EML
comparison and collaboration more effortless is FCUBE? [1], which
introduced a “Bring Your Own Learner” concept for comparison,
competition and collaboration. Despite being noteworthy, FCUBE
nonetheless is “locked” into one cloud provider, i.e., AWS, and lacks
both automation and robust fault tolerance.

We present cCube (compare, compete, collaborate), an open
source architecture that helps its user develop an application that
deploys EML algorithms to the cloud. The source code is shared at
the address https://github.com/ccube-eml under the terms of the
MIT License>.

As with FCUBE, cCube supports competition and collaboration
with filter, factor and fusing. A cCube EML application factors data,
handles parameter configuration, tasks parallel classifier training
with different algorithms, and follows training by filtering and
fusing classifier results into a final ensemble model. As such, cCube
serves 3 types of user: EML algorithm designer, multi-algorithm
EML application manager and non-EML literate, i.e., “black box
end users”. cCube also supports crowdfunding, i.e., the sharing
of costs by a collaborative group that wishes to execute a large
multi-learner, factor, filter, and fuse application.

Uhttps://aws.amazon.com
https://flexgp.github.io/FCUBE
3https://opensource.org/licenses/MIT
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In cCube researchers can run different EML algorithms, their
own as well as others’, developed in different programming lan-
guages, without inserting any code into them to accommodate
cloud scaling. Instead of being monolithic, cCube has a microser-
vices architecture [8], i.e., a suite of small services (microservices),
each running its own process and communicating with lightweight
protocols, e.g., HTTP resource API and message queues. It has
one service for each of factorization, scheduling, learning, filtering,
and fusion. Each service is independently deployable in a fully
automated way making applications easier to scale and more fault
tolerant. Collectively cCube’s services are minimally centralized
and managed by an orchestrator. For all of its microservices, cCube
uses lightweight runtime environments known as “software con-
tainers”, or simply “containers”. While all computation is performed
at the hardware level with conventional hypervisor-based virtual-
ization, the containers function at the operating system level. All
containers share the same kernel of the host system, instead of each
using its own virtual machine. Thus, containers are smaller and
lightweight compared to an entire virtualized operating system.
Moreover, they are designed to make application packaging and
execute microservices easily [3]. cCube containers can be automati-
cally deployed using Docker.

We developed a cCube application and demonstrate its deploy-
ment on different clouds, utilizing free resources, describing its
employment on two cloud providers, using them both separately
and together.

The paper is organized as follows. We start by reviewing the
motivations for factoring, filtering and fusion classification and for
cloud-scaling and illustrating the relevant related work in Section 2.
The cCube platform is described in Section 3. Demonstration is in
Section 4. Finally, conclusions and future work are in Section 5.

2 RELATED WORK

In the following we review the most relevant related work con-
cerned with collaborative EML and cloud applications architectures.

2.1 Collaborative EML

Only one prior project, FCUBE, has addressed the challenge of the
EML community collaboratively developing a compendium solu-
tion to a noteworthy “big data” classification problem. The project
assumes individuals contribute their algorithms, called “learners”,
each independently written to solve the problem using a smaller
sample of the dataset. The software applies a particular general
decomposition called “factor”, “filter”, and “fuse”: once contributed
learners are collected, it executes them independently and in par-
allel by factoring the entire data and creating splits of the original
data into feasible sizes. During training, the classifiers, i.e., models,
resulting from all the learners are collected. Then FCUBE executes a
step of classifiers filtering and fusion that reduces the collection be-
fore creating an ensemble-based solution. This ensemble classifier
is the community’s solution to the “big data” problem [1].

FCUBE learners can be completely different EML techniques,
implemented in different programming languages. Its “Bring Your
Own Learner” paradigm has a plug-and-play style interface that
reduces programming burden on the participants. Algorithm devel-
opers are required to respect the specifications of the input/output
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interface, providing the two functions of classifier training (i.e.,
model building) and evaluation. cCube supports the same Bring
Your Own Learner paradigm as FCUBE.

2.2 Cloud Applications Architectures

Cloud computing exploits a distributed memory resource model.
Instead, using a shared memory model, such as GPUs or multi-
threaded CPU, requires specific inter-process communication pro-
tocols to be embedded within EML software and that force the
algorithms to be refactored. Cloud computing removes the ineffi-
ciency of owning physical hardware that has be provisioned for
infrequent, high workloads and instead offers elastic computation
as a service in the form of virtual instances, for whatever time,
quantity and quality is required by a specific application.

Significant evolutionary computation work exploits cloud com-
puting while not necessarily solving the explicit collaborative clas-
sification challenge. Confining our discussion to those most rele-
vant to cCube, besides the aforementioned FCUBE, is one system
that uses a synchronous storage service as pool for exchange in-
formation among population of solutions [10]. Another, SPACE
allows the computational resources necessary for running large
scale evolutionary experiments to be made available to amateur
and professional researchers alike, in a scalable and cost-effective
manner, directly from their web browsers [7].

cCube integrates user code into an application that runs on the
cloud, in that aspect it is similar to FCUBE. FCUBE runs as a
platform on the Amazon Web Services (AWS) cloud platform, using
the Amazon Elastic Compute Cloud (EC2) service, or can equivalently
be described as an architecture that creates an application to run
on AWS. It has been impressively demonstrated on an EC2 cluster
of 100 instances, using the Higgs dataset with 11 000 000 exemplars,
running 5 different learning algorithms [1].

However, FCUBE has a number of limitations. For example,
FCUBE suffers from a strict dependence on a specific cloud provider,
i.e., AWS EC2. Every FCUBE startup process interacts with the Ama-
zon API and its virtual instances are realized and replicated using a
technology specifically devised by Amazon, i.e., Amazon Machine
Image (AMI). A goal of cCube is to provide software independent
cloud vendors, e.g., users can take advantage of market prices.

There are also some shortcomings in FCUBE’s Bring Your Own
Learner implementation:

e FCUBE requires manual intervention whenever a new
learner is contributed and each new learner triggers a re-
build of the FCUBE AMI, since the EML algorithms needs
to be explicitly declared;

e should a new EML algorithm execute in a currently unsup-
ported programming language, that learner’s execution
environment on the virtual instance has to be manually
configured. FCUBE’s maintenance and extension process
is fragile, inflexible and labour intensive;

e FCUBE requires manual intervention in the fusion step
when outputs of models are collected;

o the current design does not guarantee broad scalability
and true fault-tolerance for every component, since the
functionalities are not clearly distinguished. The communi-
cation protocols are not reliable, e.g., FCUBE uses Amazon
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S3 as a file-based interchange point and relies upon SSH
commands.

We elaborate on how cCube’s microservices design addresses the
shortcomings of FCUBE in later sections. In general cCube offers
enhanced automation, robustness, support for integrated develop-
ment practices and is independent of a cloud provider.

Cloud computing offers a broad spectrum of technologies from
which to compose an evolutionary algorithm or system. Merelo
Guervos et al. devised SofEA, a model for pool-based evolutionary
algorithms in the cloud, an evolutionary algorithm mapped to a
central CouchDB object store [9]. SofEA provides an asynchronous
and distributed system for individuals’ evaluations and genetic
operators application. Later, they defined and implemented the
EvoSpace Model [6], consisting of two main components: a repos-
itory storing the evolving population and some remote workers,
which execute the actual evolutionary process. It is the first work
to involve technologies on the Platform-as-a-Service (PaaS) and
Software-as-a-Service (SaaS) level: Heroku as Paa$ for the popula-
tion store and PiCloud as Saa$ for the computing operations. cCube
takes advantage of Docker, PostgreSQL, RabbitMQ, and MongoDB.

Cloud specific development methodologies can ease the devel-
opment of cloud-scaled evolutionary algorithms but, with the ex-
ception of Salza et al. [11], they have not been supported. The
authors provide a workflow for a scenario in which the develop-
ment, deployment and execution of distributed GAs are performed
in a DevOps fashion. cCube follows suit with the proposal by Salza
etal. [11].

Next, in Section 3 we describe cCube and motivate its design
choices which yield cloud and development practices that are prin-
cipled, systematic and robust.

3 CCUBE

The aim of cCube is to facilitate EML comparison, competition and
collaboration. A use case that cCube handles is factoring, filtering
and fusing. There are three possible users of cCube:

(1) EML researcher, using best practices for software method-
ology;

(2) end user, comparing EML algorithms to gain insight, se-
lecting competing EML algorithms for best performance
and collaborating with other end users as a community;

(3) cCube engineer, that administers, maintains and intervenes
manually for the platform.

To build a cCube application, the EML developers copy a tem-
plate from cCube’s repository and customize configuration, e.g.,
EML algorithm invocation. The developers then become end users
and start the cCube client on their machine, provide keys for autho-
rization, thus keeping their sensitive information local and secure.
The client, through Docker, starts the application after provisioning
resources, running resource discovery and set up. The engineer of
cCube itself expands and maintains the open source code.

EML Researcher. EML developers often use a personal computer
to construct an EML algorithm that is accurate and fast enough on a
subsample of the available data set. cCube is designed to help them
integrate best practices into their software development processes.
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Figure 1: cCube is consistent with software development
best practices, e.g., Continuous Integration.

Figure 1, for example, depicts an ideal and effective production
work flow.

By practicing Continuous Integration [5], the learner developers
can maintain their source code in a single repository, and access
to automated testing, building and deployment processes. Then,
after creating cCube as an extension, the developer can execute
the learner in the cloud. Using Docker, we extended the devel-
opment capability to allow the developer to include source code
and/or to define the algorithm’s execution environment, i.e., every
component required for learner execution in any programming
language or technology, without requiring a manual development
intervention. The interaction interface is kept flexible by defining
a wrapping interface. Therefore, the only information required is
the path and instruction on how to execute the two phases of EML
computation, (1) learning and prediction (2) filtering and fusing
the trained models output path . The developer does not need to
make the source code aware of cCube’s functionality or parallel
computation. Therefore, any algorithm can be executed in cCube.
Once the container is defined, the developer only needs to build
and distribute it on a Docker Registry repository, to be downloaded,
executed and replicated on demand.

cCube End User. The end user is interested in executing large-
scale EML algorithms, and therefore treats cCube as a black box.
cCube does provisioning and distribution of computational units
using cloud accounts. The end user view of cCube is shown in
Figure 2. As we can observe:

o the end user provides configurations for cCube tasks, EML
algorithms, data set and compute duration;

o the cCube client submits requests to cloud providers and a
cluster of the required number of nodes is allocated;

o cCube is ready to orchestrate containers and start the EML
algorithms for factoring, fusion and filtering;

e when a job is submitted a cCube cluster pulls the Docker
images for the services from the Docker registry and en-
queues the tasks for the services.

In another scenario, cCube supports end users who collaborate
by each contributing some machines they have commissioned from
their own account on their cloud provider, in a sort of crowdfunding
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Figure 2: cCube for the end user perspective, a convenient
black box that performs EML at scale using Docker across
multiple clouds for compute.

model. In this case, cCube allows each user to keep their cloud
credentials private, since the invocation of cloud instances happens
local to each of them, i.e., on their own computer. This enables
cCube to execute securely. The user can leave the cluster at any
time.

cCube Engineer. The role of the cCube engineer is to extend the
capabilities for comparison, competition and collaboration pro-
vided by cCube as well as maintain and administer the architecture.
Publicly available source code and licensing are essential for these
responsibilities as are minimal manual or labor intensive steps when
handling administration and security tasks. A cCube engineer last
but not least requires, e.g., expertly designed interfaces and loosely
coupled code. For these reason, we took a microservices design
approach with cCube’s architecture.

3.1 cCube Architecture

The demands of the EML researcher, end user and cCube engi-
neer are met with microservices and Docker containers with event
queues and REST communication [13]. The design goals for cCube
have been identified as:

portability, in terms of cross-platform and cloud execution;

extendability with open source code;

scalability in distributing the computation;

robustness, i.e., tolerant of failures;

maintainability, e.g., loosely coupled components and ex-

plicit assumptions;

o deployability, exploiting standard interfaces for deploy-
ment;

o runability, run anywhere without recompilation as in plug-
and-play insertion;

o support best practices in development, maintenance and

performance.

Instead of being monolithic, cCube’s architecture is based on mi-
croservices. For each functional component of cCube, we identified
and implemented a single microservice. These components could
be individually developed, using different programming languages
(though we wrote them entirely in Python) and technologies, and
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the interaction between them occurs through simple communica-
tion protocols, i.e., REST API with HTTP and AMQP* message
queues. This allowed cCube to have separate provisioning, distribu-
tion, communication and EML system execution. An overview of
cCube is given in Figure 3.

For the EML development, microservices and the software con-
tainers approach, we enhanced the Bring Your Own Learner model
of FCUBE [1]. Instead of inserting the learner within the source
code and environment of cCube, we injected cCube inside the con-
tainer of the EML algorithm, running it as daemon instructed to
manage the communication with the other microservices of the
system.

3.2 cCube Implementation

We also focused on the open source properties of cCube in order
to make the microservices fully accessible to the community, e.g.,
others could learn and extend cCube’s code to develop other EML
architectures. To facilitate the deployment, as well as development,
we abandoned the traditional use of the hypervisor-based virtual-
ization in favor of the container-based one using Docker”. With the
hypervisor-based virtualization every hardware component needs
to be emulated, and on top of these newly created virtual hardware
an operating system is installed. Instead, with Docker is possible
to execute more the one container on the same cloud instance by
sharing the common resources (e.g., CPUs, RAM) and Linux ker-
nel, without impacting performance. Thanks to the Docker API,
it was relatively easy to develop containers that themselves were
easy to build, share and quickly execute in a cloud environment.
Moreover, once an image of the container is ready, thus completed
the build process, it can be stored into a convenient public registry
that Docker provides, i.e., Docker Hub.

cCube achieves independence from cloud providers by employing
Docker Swarm. This is a native technology that composes a cluster of
Docker platforms between machines running the Docker engine. In
addition, by using Docker, we implicitly made cCube flexible against
the limitations of the quantity of machines the providers usually
impose upon their users, through an infrastructure definable as
“multi-cloud”, i.e., based on the allocation of instances by different
cloud providers but participating in the same system [4].

3.2.1 Microservices. An Orchestrator creates and provisions
the compute units, initiating and directing the symphony of mi-
croservices. It uses a bridge pattern [12] to interface with different
cloud providers, e.g., OpenStack and Amazon EC2.

We designed the Learner, Filter and Fuser microservices as
part of one single container, i.e., the Worker, thus stored by the
developer as a single image on a Docker registry. The EML devel-
oper needs to inject the cCube Worker component into the target
EML algorithm execution environment, i.e., a Docker container.
This component will act as daemon inside the container and be
in charge of communication with the cCube cluster. Thus, it will
execute the EML algorithm for learning or prediction, using envi-
ronment variables defined by the EML developer. By the means of
a parameter given during the orchestration, the container is able to
detect which “role” to play.

*https://www.amqp.org
Shttps://www.docker.com/
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Figure 3: Under the hood of the cCube black box there is a microservices and containers architecture using REST API and
message queues for extensible, automated, reliable and scalable EML.

We designed and implemented the following microservices, whose
overview is shown in Figure 3:

Factorizer: uses the bridge pattern [12] to interface with the
storage. The storage is currently PostgreSQL®, but it is possible to
add other technologies by means of the definition of other driver
classes. The Factorizer exposes its services through a REST in-
terface thus the communication happens using HTTP. This allows
the data set upload via a “POST /dataset” request and then the data
set can be split into separate parts on demand and following the
components needs, e.g., to use for training, fusion, and testing.

Scheduler: it accepts jobs through a REST interface. A job is
considered as a chain of processes executed on a cCube cluster,
involving all the components, i.e., microservices. Once a new job
is requested, the Scheduler creates the tasks for the Learners,
Filter and Fuser and publish them on different message queues
in JSON format. First of all, a task represents a placeholder to let
other microservices carry out their duties by consuming them.
Exploiting a convenient feature of AMQP, in case of a microservice
failed, e.g., cloud provider hardware fault, the task would be put

Chttps://www.postgresql.org

again into the queue and that computation run again by another
container. If the EML algorithm concludes the computation, then
the task is acknowledged, i.e., definitively removed from the queue.
However, in the case the fault is due to an EML algorithm failure,
cCube avoids the repetition of the same task since, with the same
configuration, it would fail again. Thus, the daemon recognizes
it, acknowledges the task in the queue and sends just a failure
placeholder message to the Filter. Moreover, the tasks contain
all the relevant information needed for running an activity, e.g.,
the target dataset name, the parameters of separation for training,
fusion and testing, features to include/exclude, duration. In the case
of the Learners, the tasks would be in the number equal to the
degree of parallelization expected by the user. A producer/consumer
pattern is controlled by a “queue manager”, implemented by using
the RabbitM(Q’ message broker service. It is worth noting that
multiple EML algorithms can participate in the same job and, also,
multiple jobs can run on the same cluster.

http://www.rabbitmq.com
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Learner: each of the multiple learners consumes a task, training
data sample and parameters, which are possibly generated at ran-
dom when the task is generated by the Scheduler, allowing also a
parameters factorization. First, a data sample for training is given by
the Factorizer, using the “GET /dataset/<name>/training/sample”
request. Once received the data, the Learner executes the EML
algorithm according to a given duration, i.e., one of the parameters
included in the task. Then, the computed model is compressed and
stored in a message and sent to a queue for outputs. Moreover, a
copy of each produced model is stored into a MongoDB ¢ database.

Filter: EML algorithm output is filtered according to some
“filter policy”. When the Filter task has been consumed, it knows
exactly the number of expected outputs. Therefore, it consumes
outputs until the last expected message arrives. Then, the models
are executed on a split of the data that has been set aside, as a
result of the “GET /dataset/<name>/fusion” request, according to
a filter policy. It is worth noting that the split is named “fusion”
since it is also used during the the fusion phase to produce the
ensemble. In our demonstration, the EML algorithm predictive
performance is compared to a majority class classifier and if it is
above some threshold the model is accepted. After the set of filtered
models is done, it is published as a single message to another queue
for fusing. The result of the filtering phase is also stored into a
MongoDB database.

Fuser: filtered models are eventually fused together to collab-
orate in an ensemble model. A fusion task is consumed and the
message provides the needed information. Data for fusion comes
from the Factorizer through a “GET /dataset/<name>/fusion” re-
quest, i.e., the same split used during the filter phase. Then, another
data split, as a result of the “GET /dataset/<name>/test” request, is
used to test the ensemble and computing some predictive perfor-
mance metrics. The “fusion policy” may require the models to be
executed both for the fusion and testing phases. In our demonstra-
tion, we composed an ensemble based on majority of votes, thus we
executed the models only for the test phase. Finally, the ensemble,
computed metrics and all the models are stored using the MongoDB
service.

3.2.2  cCube Injection. As mentioned above, we let the EML re-
searchers injecting the cCube code in their containers. This piece
of code is maintained by the cCube engineers and publicly dis-
tributed in the form of a executable script, that could be for in-
stance make downloadable from a commodity URL (i.e., https://raw.
githubusercontent.com/ccube-eml/worker/master/install.sh).

The EML developer is asked to use a cCube configuration file
that, in the current version, corresponds to a Dockerfile, i.e., a
Docker container environment definition file. The user is allowed
to define the environment using all the features given by Docker,
e.g., the inheritance from other public container images already
providing the set of tools required for the execution. The only
requirement for the connection with cCube is the definition of some
predefined environment variables, e.g., $CCUBE_LEARN_COMMAND,
$CCUBE_PREDICT_COMMAND, and the inclusion of few download and
execution lines, e.g., ENTRYPOINT ["/ccube"].

In our demonstration, we encapsulated the GP Function EML
algorithm executable [1] into a container without changing the

8https://www.mongodb.com
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source code. The environment variables define how the cCube
daemon can interact with the EML algorithm and its outcome for
both the learning and prediction phases.

4 DEMONSTRATION

In this section we demonstrate how to use cCube to run the GP
Function EML algorithm with a split of the Higgs dataset [2]. We
used a private OpenStack cloud and then a commercial provider, i.e.,
Amazon EC2. It is worth noting that we used only instances eligible
for the Amazon AWS Free Tier, thus all the computation was free.

4.1 Environment Preparation

We first had to wrap the current implementation of GP Function
in a Dockerfile showed in Listing 1. Even though we are not
the original developers, it was enough to know only a few input
parameters for GP Function to run it in cCube:

where to find the data used for learning;

where to find the algorithm output, i.e., the models;
how to execute the model to predict data;

where to collect the ensemble model.

Listing 1: The . ccube file for the GP Function algorithm.

FROM openjdk
LABEL maintainer "John Doe john.doe@ccube-eml"

# cCube injection.
RUN curl —sSL https://raw.githubusercontent.com/ccube—eml/worker

< /master/install.sh | sh
WORKDIR /ccube
ENTRYPOINT ["python3", "-m", "worker"]

# Environment preparation.
COPY gpfunction.jar /gpfunction/gpfunction.jar

# cCube configuration.

ENV CCUBE_LEARN_COMMAND "java -jar /gpfunction/gpfunction.jar -
< train \${CCUBE_LEARN_DATASET_FILE} -minutes \${
< CCUBE_LEARN_DURATION_MINUTES} -properties \${
< CCUBE_LEARN_PARAMETERS_PROPERTIES_FILE}"

ENV CCUBE_LEARN_WORKING_DIRECTORY "/gpfunction"

ENV CCUBE_LEARN_OUTPUT_FILES "\${CCUBE_LEARN_WORKING_DIRECTORY}/
< mostAccurate.txt"

ENV CCUBE_PREDICT_COMMAND "java -jar /gpfunction/gpfunction.jar
— -predict \${CCUBE_PREDICT_DATASET_FILE} -model \${
< CCUBE_PREDICT_INPUT_FILES}/mostAccurate.txt -o
< predictions.csv"

ENV CCUBE_PREDICT_WORKING_DIRECTORY "/gpfunction"

ENV CCUBE_PREDICT_PREDICTIONS_FILE "\${
< CCUBE_PREDICT_WORKING_DIRECTORY}/predictions.csv"

The first section in Listing 1 is used to prepare and set up the
environment for the execution. With help of the inheritance ca-
pacity of Docker, we were able to start with an environment that
had Java already installed. We did this on line (1) by picking the
openjdk container that is publicly available on Docker Hub, i.e.,
the official and public Docker registry. Lines (5-7) were used to
download the cCube code (5), install the dependencies, and define
the starting point for the container (6-7), i.e., the cCube daemon.
With line (10) we copied the GP Function JAR executable into the
environment. The interface between the EML developer and the
cCube system are on lines (13-18). We define the environment
variables, and gave only the relevant information cCube would take
advantage of during the execution. Moreover, cCube provides some
predefined environment variables that it will fill in at run time, e.g.,


https://raw.githubusercontent.com/ccube-eml/worker/master/install.sh
https://raw.githubusercontent.com/ccube-eml/worker/master/install.sh
https://www.mongodb.com
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Figure 4: The terminal execution of the orchestrator for the OpenStack and Amazon providers.

the $CCUBE_LEARN_DATASET_FILE will contain the dynamic path
cCube assigns to the training data samples.

Finally, we started the Docker build process and pushed the
resulting image to the public Docker Registry.

4.2 Cloud Swarm Setup

We composed the cluster for cCube in three steps:

(1) we ran it on an OpenStack private cloud and created a
cluster with 64 nodes using the cCube orchestrator;

(2) we composed a separate cluster on Amazon EC2 with 64
other nodes on which we tried the system again;

(3) finally, we just disassembled the two clusters and joined
them into a single hybrid cluster with a total of 128 nodes.

We launched only small and cheap instance types: (1) Amazon
EC2, “t2.micro” with 1 CPU and 1 GB RAM,; (2) OpenStack private
cloud, instances with 1 CPU and 1 GB RAM.

To do this, we extended the cCube Orchestrator to interface
with both the cloud providers. The cCube Orchestrator runs a
number of threads equal to the cluster size, in order to ask for new
allocations in parallel. To avoid stressing the API interface of the
providers we delayed the start of the threads of 1s each.

We identified two different times to measure:

e “creation”, i.e., the necessary time to acquire the virtual
machine and be able to communicate with it through an
SSH connection;

e “provisioning”, i.e., the time required to install Docker on
the machine and add it to the Docker Swarm.

Figure 4 shows the commands we executed in the terminal to
run the Orchestrator. We intentionally hide most of the output,
since it was mostly debugging logs. It is worth noting that, even if
the cloud providers are different, the commands are quite similar.

Given the cloud provider and a configuration file containing the
account credentials, the cCube Orchestrator is able to:

(1) create the 64 nodes on the provider, and provision them
with the latest version of Docker (node create);

(2) initialize the cluster, i.e., the Docker Swarm, by electing
one of the nodes (e.g., ccube-jah7d6sa-00) as a manager
(cluster init);

(3) let all other nodes join the cluster as workers, by using the
secret token given by the previous command and the name
of the manager (cluster join).

From this point, the infrastructure is ready to run any Docker
service, as cCube in our case. We measured the setup time, by
running each of command 10 times, and we got 64 nodes in 15 min
on average for OpenStack and 9 min for Amazon. It took only a
couple of minutes to provision the two clusters and let the nodes
join a single Docker Swarm.

4.3 cCube Execution

Once the cluster was ready, we executed cCube with the GP Func-
tion classifier on a split of the Higgs dataset [2]. This was done by
running the service create command for each of the microser-
vices. The template of the command is shown in Figure 4 where
the execution of the Learner microservices is specified. By speci-
fying the --replicas parameter, a single command could run it in
parallel on 64 Learners.

Figure 5 shows a screenshot of the RabbitMQ administration
web page displaying the status of cCube messages at a point during
the computation. During that moment, 14 Learners had completed
their work and the other 50 Learners were still running. In the
meantime, the Fuser was waiting for all the 64 Learner outputs.

Finally, Figure 6 shows the output from the Fuser we collected
in the MongoDB database, storing both the models and the times.
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Overview Messages
Name Features Ready Unacked Total
gpfunction @filter.outputs D 0 ] 0
gpfunction@filter.tasks D 0 1 1
gpfunction@fuser.tasks D 0 1 1
gpfunction@learner.outputs D i4 0 14
gpfunction @learner.tasks D 0 50 50

Figure 5: The message queues status during the cCube exe-
cution.

models times 3

|55 ccube 52.90.14.119:27017 ccube £~ 'ﬁ' Al

Query = {} [ (¥« | QueryBuilder
Projection {3} Sort 3
Skip Limit
B Bl | [s0 v | | Documents 1 to 50
Key Value Type
»[2(1) {id: 58.. {6 fields} Docum...
b[3](2) {id: 58... {6 fields} Docum...
v[3](3) {Uid: 58.. {6 fields} Docum...
[=_id 58998bf15ef049... Objectld
[T]time 2017-02-07T08:... Date
[Tltype learner_start String
[#|random_s... 1 Int32
Mip 10.0.0.56 String

[Thostname  382cf64b036h String
»[3](4) {id: 58... {6 fields} Docum...

1 item s¢ #| Count Documents B 0.032s

Figure 6: The output of the cCube execution on the Mon-
goDB database.

5 CONCLUSIONS AND FUTURE WORK

We present cCube, an open source architecture for the comparison,
competition and multi-party collaboration of EML algorithms and
users. The goal of cCube is to provide an instrument for EML
developers to run their algorithms on a large scale using parallel
cloud machines without changing code. By using the “Bring Your
Own Learner” model, we allow the collaboration of different EML
algorithms to learn on the same dataset and combing the results
into an ensemble after filtering and fusion.

A microservices architecture simplifies the development and the
maintenance processes, and facilitates extension from the open
source community. Moreover, we implemented the microservices
in the form of software containers using Docker and demonstrated
the execution of cCube. The main contributions are:

o let EML developers define the environment for the execu-
tion of their algorithms and easily inject and run cCube’s
code;
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e package the microservices in distributable images and
make them available through a public repository;

o using the capability of Docker Swarm, we realized a flexible
infrastructure, avoiding the “lock” in from specific cloud
providers and possibly runnable on multi-cloud,;

o allow users collaboration, in the form of crowdfunding.

Currently, our architecture allows to fuse models resulting from
different learners only if the EML algorithms are available on the
same container. For instance, the GP Function in Java can fuse
with a another Genetic Programming learner written in Python.
Therefore, the use of specific algorithms is possible by specifying it
using a task parameter. It is in our future agenda to enhance the
architecture to better support multiple EML algorithms running
and their models fusion, adding a prior “executor” microservice
whose purpose is to free the Fuser from the strict bond with the
execution environments.

Also, future work will involve extending cCube further for com-
parison and competition, as well as testing its usability, testing the
large scale capacity over more cloud providers and more nodes
on big data challenges. In addition, deploy other Evolutionary
Algorithm problems.
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