
cCube: A Cloud Microservices Architecture for
Evolutionary Machine Learning Classification

Pasquale Salza
University of Salerno, Italy

psalza@unisa.it

Erik Hemberg
Massachusetts Institute of Technology, USA

hembergerik@csail.mit.edu

Filomena Ferrucci
University of Salerno, Italy

�errucci@unisa.it

Una-May O’Reilly
Massachusetts Institute of Technology, USA

unamay@csail.mit.edu

ABSTRACT
We present cCube, a microservices open source architecture used
to automatically create an application of one or more Evolution-
ary Machine Learning (EML) classi�cation algorithms that can be
deployed to the cloud with automatic data factorization, training,
result �ltering and fusion.

CCS CONCEPTS
•Computing methodologies → Machine learning; •Theory
of computation → Evolutionary algorithms; •Software and its
engineering → Cloud computing;

KEYWORDS
Evolutionary Machine Learning, Microservices, Cloud Computing

ACM Reference format:
Pasquale Salza, Erik Hemberg, Filomena Ferrucci, and Una-May O’Reilly.
2017. cCube: A Cloud Microservices Architecture for
Evolutionary Machine Learning Classi�cation . In Proceedings of GECCO
’17 Companion, Berlin, Germany, July 15-19, 2017, 2 pages.
DOI: http://dx.doi.org/10.1145/3067695.3076089

1 INTRODUCTION
We present cCube (compare, compete, collaborate), an open source
architecture helping its users develop an application to deploy EML
algorithms to the cloud. The source code is shared at the address
https://github.com/ccube-eml, under the terms of the MIT License.

cCube supports competition and collaboration as with FCUBE [1],
a prior project that has addressed the challenge of the EML commu-
nity, collaboratively developing a compendium solution to a “big
data” classi�cation problem. Despite being noteworthy, FCUBE
architecture is “locked” into one cloud provider, i.e., Amazon AWS,
and lacks both automation and robust fault tolerance.

A cCube EML application factors data, handles parameter con�g-
uration, tasks parallel classi�er training with di�erent algorithms,
�ltering and fusing classi�er results into a �nal ensemble model.
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cCube serves 3 types of users: EML algorithm designer, multi-
algorithm EML application manager and “black box” end users.
In cCube researchers can run di�erent EML algorithms, their own
as well as others’, developed in di�erent programming languages,
without inserting any code into them to accommodate cloud scaling.
cCube also supports crowdfunding, i.e., the sharing of costs by a
collaborative group that wishes to execute a large multi-learner,
factor, �lter, and fuse application.

Instead of being monolithic, cCube has a microservices architec-
ture [4], each running its own process and communicating with
lightweight protocols, e.g., HTTP resource API and message queues.
Each service is independently deployable in a fully automated way
making applications easier to scale and more fault tolerant. For all
of its microservices, cCube uses lightweight runtime environments
in the form of “software containers” [2], automatically deployed
using Docker and Docker Swarm. By using Docker, we implicitly
made cCube �exible against the limitations of the quantity of ma-
chines the providers usually impose upon their users, through an
infrastructure de�nable as “multi-cloud”, i.e., based on the alloca-
tion of instances by di�erent cloud providers but participating to
the same system [3].

2 cCube ARCHITECTURE
We designed the cCube architecture devising several microservices,
all managed by the client Orchestrator. It creates and provisions
the compute units, initiating and directing the symphony of mi-
croservices. It uses a bridge pattern [5] to interface with di�erent
cloud providers, e.g., OpenStack and Amazon EC2.

To build a cCube application, the EML developers copy a template
from cCube’s repository and customize con�guration, e.g., EML
algorithm invocation. Then, cCube runs as daemon instructed to
manage the communication with the other microservices of the
system. The only requirement for the connection with cCube is
the de�nition of some prede�ned environment variables, de�ning
how the cCube daemon can interact with the EML algorithm and
its outcome for both the learning and prediction phases.

The developers then become end users and start the Orchestra-
tor on their machine, provide keys for authorization, thus keeping
their sensitive information local and secure. The client, through
Docker, starts the application after provisioning resources, running
resource discovery and set up. All the produced output is stored
into a support database, e.g., MongoDB.

In detail, we de�ned the following microservices, whose overview
is shown in Figure 1.

https://github.com/ccube-eml
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Figure 1: Under the hood of the cCube black box there is a microservices and containers architecture.

Factorizer: it interfaces with the storage, e.g., PostgreSQL, expos-
ing its services through a REST interface, thus the communication
happens using HTTP. This allows the data set upload and then the
data set can be split into separate parts on demand and following
the components needs, e.g., to use for training, fusion, and testing.
Scheduler: it accepts jobs through a REST interface. A job is
considered as a chain of processes executed on a cCube cluster,
involving all the components, i.e., microservices. Once a new job
is requested, the Scheduler creates the tasks for the Learners,
Filter and Fuser and publish them on di�erent message queues
in JSON format. In case of a failed microservice, the task would
be put again into the queue and that computation run again by
another container. Moreover, the tasks contain all the relevant
information needed for running an activity, e.g., the target dataset
name, the parameters of separation for training, fusion and testing,
features to include/exclude, duration. A producer/consumer pattern
is controlled by a “queue manager”, e.g., RabbitMQ.
Learner: each of the multiple learners consumes a task, training
data sample and parameters, which are possibly generated at ran-
dom when the task is created by the Scheduler, allowing also a
parameters factorization. First, a data sample for training is given
by the Factorizer and, once received, the Learner executes the
EML algorithm according to a given duration, i.e., one of the param-
eters included in the task. Then, the computed model is compressed
and stored in a message and sent to a queue for outputs.
Filter: it consumes the outputs until the last expected model
arrives. Then, the models are executed on a split of the data that
has been set aside, according to a �lter policy. After the set of

�ltered models is complete, it is published as a single message to
another queue for fusing.
Fuser: �ltered models are eventually fused together to collaborate
in an ensemble model. A fusion task is consumed, providing the
needed information. Data for fusion comes from the Factorizer,
i.e., the same split used during the �lter phase. Then, another data
split is used to test the ensemble and computing some predictive
performance metrics.

3 CONCLUSIONS AND FUTUREWORK
We presented cCube, an open source architecture for the compari-
son, competition and multi-party collaboration of EML algorithms
and users. As future work, we plan to implement and experiment
cCube, using di�erent use cases, algorithms, and cloud providers.
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