
Received: 17 December 2021 - Revised: 16 May 2022 - Accepted: 20 May 2022 - IET Software
DOI: 10.1049/sfw2.12064

REV I EW

A systematic mapping study of source code representation for
deep learning in software engineering

Hazem Peter Samoaa1 | Firas Bayram2 | Pasquale Salza3 | Philipp Leitner1

1Software Engineering and Interaction Design
Division, Chalmers | University of Gothenburg,
Gothenburg, Sweden

2Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

3Software Evolution & Architecture Lab, University
of Zurich, Zurich, Switzerland

Correspondence

Hazem Peter Samoaa, Software Engineering and
InteractionDesignDivision,Chalmers |University of
Gothenburg, Lindholmsplatsen 1, Kuggen building,
Room 22, Floor 3, 417 56, Gothenburg, Sweden.
Email: samoaa@chalmers.se

Funding information

Melise – Machine Learning Assisted Software
Development, Grant/Award Number: Swiss
National Science Foundation/SNSF 20; AIDA – A
Holistic AI‐driven Networking and Processing
Framework for Industrial IoT, Grant/Award
Number: Knowledge Foundation of Sweden/
Rek:2020006; Developer‐Targeted Performance
Engineering for Immersed Release and Software
Engineers, Grant/Award Number: Swedish
Research Council VR/2018‐04127

Abstract
The usage of deep learning (DL) approaches for software engineering has attracted much
attention, particularly in source code modelling and analysis. However, in order to use
DL, source code needs to be formatted to fit the expected input form of DL models.
This problem is known as source code representation. Source code can be represented via
different approaches, most importantly, the tree‐based, token‐based, and graph‐based
approaches. We use a systematic mapping study to investigate i detail the representa-
tion approaches adopted in 103 studies that use DL in the context of software engi-
neering. Thus, studies are collected from 2014 to 2021 from 14 different journals and 27
conferences. We show that each way of representing source code can provide a different,
yet orthogonal view of the same source code. Thus, different software engineering tasks
might require different (combinations of) code representation approaches, depending on
the nature and complexity of the task. Particularly, we show that it is crucial to define
whether the DL approach requires lexical, syntactical, or semantic code information. Our
analysis shows that a wide range of different representations and combinations of rep-
resentations (hybrid representations) are used to solve a wide range of common software
engineering problems. However, we also observe that current research does not generally
attempt to transfer existing representations or models to other studies even though there
are other contexts in which these representations and models may also be useful. We
believe that there is potential for more reuse and the application of transfer learning when
applying DL to software engineering tasks.

1 | INTRODUCTION

Machine learning (ML), and nowadays deep learning (DL), is
increasingly used by software engineering (SE) researchers and
practitioners for a wide range of tasks. Examples include source
code classification [1–3], code clone detection [4–6], bug
detection [7–9], or code summarisation [10–12]. The current
interest in DL is enabled by the wide availability of large‐scale
data (e.g., through open‐source systems hosted on platforms,
such as GitHub). Particularly, DL is interesting to researchers as
it promises good results (e.g., highly accurate code clone
detection) without the need for cumbersome (and often
limiting) explicit feature extraction process from the raw data as
it is required by traditional machine learning models [13].

In classical machine learning approaches, a considerable
amount of effort goes to the design of proper ways to capture
the structure of the data, that is, feature engineering, which is a
“human” effort in most of the cases. This is the reason why, in
the last decade, attention in machine learning is moving to
‘representation learning’, which consists of automatically
extracting or learning features without the need of human
feature engineering. In representation learning, feature engi-
neering and selection phases are taken away and replaced with
deep learning neural networks. DL models are composed of
multiple layers to learn data representations with multiple
higher levels of abstraction [14]. The networks are supposed to
learn the data representation automatically, simulating the hu-
man brain for learning and analysis. Moreover, neural networks

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2022 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2022;16:351–385. wileyonlinelibrary.com/journal/sfw2 - 351

https://doi.org/10.1049/sfw2.12064
https://orcid.org/0000-0001-5293-3388
mailto:samoaa@chalmers.se
https://orcid.org/0000-0001-5293-3388
https://ietresearch.onlinelibrary.wiley.com/journal/17518814

can be used to learn a representation of input data, such as
program source code.

However, using a DL model does not entirely free re-
searchers from all preparatory work. In order to use these
techniques, appropriate features first need first to be extracted
from the program source code and represented in a way the
DL model can understand. This process is known as 'code
representation'. Code representation is the process of trans-
forming the textual program source code into a generic input
format acceptable to the DL model [15]. Researchers can make
use of different representation approaches, depending on the
kind of information that needs to be extracted. Examples
include token‐based representation for lexical information,
tree‐based for extract syntactical information, and graph‐based
for semantic information.

No single DL and code representation approach is a silver
bullet that works ideally on every case. Furthermore, in prac-
tice, choosing a suitable code representation approach is not
trivial as the choice is heavily impacted not only by which DL
models should be employed, but also by the requirements of
the software engineering task that should be addressed. Some
problems might require to focus on the semantics of the code
rather than the syntax. For example, a research contribution in
code summarization will require different types of information
to be extracted than a clone detection approach. Currently,
there is no study that has investigated which representation
approaches are predominantly used for which types of prob-
lems, nor is there collective evidence regarding which ap-
proaches work better for which use cases.

In this paper, we address this gap through a systematic
mapping study. We systematically collected a dataset of 103
studies published between 2014 and 2021 in 20 different
conferences and journals. Our primary goal was to investigate
academic studies that propose or evaluate the usage of DL
and code representation to address practical software engi-
neering tasks, such as source code classification [1] or code
clone detection [5]. Our main acceptance criterion was that
studies needed to (a) employ DL to address a practical
software engineering task (excluding studies that use DL as a
tool to conduct software engineering research, such as
identifying automated code contributions [16]), and (b)
explicitly discuss their code representation approach. The
goal of this study is to provide an exhaustive analysis and
overview on the progress achieved in using DL models in
different software engineering tasks. We further discuss cur-
rent best practices and elaborate on gaps in the current state
of research.

We show that each way of code representation can provide
a different, yet orthogonal view of the same source code. Thus,
different SE tasks might require different (combinations of)
code representation approaches, depending on the nature and
complexity of the task. Particularly, we show that it is crucial to
define whether the DL approaches require lexical, syntactical,
or semantic code information. Our analysis shows that a wide
range of different representations are used to tackle a wide
range of common SE problems. We find that all three major
types of code representation (token‐, tree‐, and graph‐based)

are employed, but tree‐based (typically based on Abstract
Syntax Trees, ASTs) approaches are currently the most used.
Graph‐based representations are not yet common, but a
growing area of research. Hybrid representations, which
combine different representations approaches in a single
approach, are also seeing increasing use.

Nevertheless, our results also show a lack of generaliz-
ability of the presented approaches to other tasks as well as a
lack of validation based on industrial datasets. Most studies
construct models for a single limited‐scope task based on
open‐source data and rarely validate the constructed model
outside of the open‐source domain. Evidently, industrial
datasets are not inherently superior to open‐source ones.
However, during our review, it became clear that virtually all
analysed studies are based on open‐source data, published data
sets (which are often also constructed based on open‐source
data), or in some cases, artificial data. We argue that this
limits the generalizability of the investigated studies to closed‐
source industrial applications and denotes a gap in the current
research.

The rest of this paper is structured as follows. We present
necessary background about code representation in Section 2.
In Section 3, we detail the applied mapping study methodology
and research questions and also provide an overview of the 103
papers that form the basis of our discussion. Afterwards, in
Sections 4–8, we elaborate on the findings of the mapping
study per research question. This is followed by presenting the
research gaps and challenges in Section 9 and potential future
directions in Section 10. Finally, we conclude the paper in
Section 11.

2 | PRELIMINARIES

To contextualise the rest of this study, we now present some
background about code representation. In particular, we
introduce three possible forms about how source code can be
represented in DL. In the literature, the code representation
approaches are classified into four categories: Token‐based,
tree‐based, graph‐based, and others [17]. Every form maps
different syntactical and semantic aspects of the source code to
a specific data structure. These representations can then be
embedded in a neural network so that they can use source code
as input.

Source code is originally a text encoding representing a
programme. This can be processed and further transformed
into different representations forms. In this section, we
describe three well‐known representations, each one mapping
certain aspects of the original source code. We use the C
snippet depicted in Listing 1 as a running example.

Listing 1 Example of C code

1 void foo() {
2 int x = source();
3 if(x < MAX) {
4 int y = 2*x;

352 - SAMOAA ET AL.

5 sink(y);
6 }
7 }

2.1 | Token‐based representation

This representation treats code as free text. Thus, it converts
the code into a list of tokens where each word (e.g., “void”) is a
token, but each special character (e.g., ‘(’) is also a token (rather
than considering it as part of a word). An example is given in
Listing 2.

Listing 2 Token representation for the code in
Listing 1

1 ['void', 'foo', '(', ')', '{', 'int',
'x',
2 '=', 'source', '(', ')', ';', 'if',
'(', 'x', '<', 'MAX', ')', '{', 'int', 'y',
'=',
3 '2*x', ';', 'sink', '(', 'y', ')', ';',
'}', '}']

Then, each token will be encoded into a vector of numbers
using different statistical language models, such as word
embedding [18] or n‐grams [19]. In principle, word embedding is
a learned representation for text where words that have the same
meaning get a similar representation. Technically, word embed-
dings are a class of techniques where individual words are rep-
resented as real‐valued vectors in a predefined vector space [20].
Each word is mapped to one vector and the vector values are
learned in a way that resembles a neural network and hence, the
technique is often lumped into the field of DL. As for n‐grams,
they are useful abstractions for modelling sequential data, such as
text, where there are dependencies among the terms in a
sequence. However, a corpus of code can be regarded as a
sequence of sequences, and corpus‐based models, such as n‐
grams, learn conditional probability distributions from the or-
der of terms in a corpus. Corpus‐based models can be used for
many different types of tasks, such as discriminating instances of
data or generating new data that are characteristic of a domain.
Embeddings can be considered as a way to represent words and
help theDLmodel to learn the representationof the source code.
N‐grams are several words appearing together. An embedding
can be trained to represent n‐grams or just individual words.

2.2 | Tree‐based representation

This representation treats the abstract syntactic structure of the
source code. ASTs are a kind of tree representation approach
that is widely used by a programming language and SE tools.

Figure 1 shows an example of an AST representation. The
nodes of the AST tree are related to constructs or symbols of

the source code. In comparison to the token‐based approach,
AST representation is abstract and does not include all avail-
able details, such as punctuation and delimiters. Theoretically,
ASTs can be used to illustrate the lexical information and the
syntactic structure of source code, such as the function name,
and the flow of the instructions (e.g., in an if or while
construct). Recently, some approaches combined neural net-
works and ASTs to constitute tree‐based neural networks
(TNNs) [21]. Given a tree, TNNs learn the vector represen-
tation by recursively computing node embeddings in a bottom‐
up way. Popular TNN models are the Recursive Neural
Network (RvNN) [22], Tree‐based Convolutional Neural
Network (TBCNN) [3], and Tree‐based Long Short‐Term
Memory (Tree‐LSTM) [23].

2.3 | Graph‐based representation

In this approach, source code is represented as a graph on
many different levels. Levels of representation will define the
type of the representation graph. Thus, a control flow graph
(CFG, see Figure 2a) describes the sequence in which the in-
structions of a programme will be executed. Thus, the graph is
determined by conditional statements, for example, if, for, and
switch statements. In CFGs, nodes denote statements and
conditions, and they are connected by directed edges to indi-
cate the transfer of control.

Alternatively, the representation might be a data flow that is
variable‐oriented. Thus, a data flow graph (DFG) is used to
follow and track the usage of the variables through the CFG. A
DFG edge represents the subsequent access or modification
onto the same variables. Call flow graph (CallFG) captures the
relation between a statement which calls a function and the
called function [24]. Finally, the entire programme can be
represented as a graph using a programme dependency graph
(PDG, see Figure 2b), where statements and predicate ex-
pressions can be characterised by the nodes. In this study, we
differentiate between the tree‐ and graph‐based approaches
since each representation approach is used to retrieve a

F I GURE 1 Abstract syntax tree for the code snippet in Listing 1

SAMOAA ET AL. - 353

different level of information from the source code. Thus, the
tree‐based approach, such as using the AST, is used to extract
the syntactical information from the source code [21], whereas
graph‐based approaches, such CFG or DFG, extract semantic
information [25].

3 | RESEARCH METHODOLOGY

Our goal is to study what code representation approaches are
used in combination with DL within the field of software
engineering, and which code representation approaches are
suitable for which tasks. Our primary method is a systematic
mapping study. Systematic Mapping studies are a commonly
used research method to systematically analyse a mature body
of research and to derive recommendations from a disparate,
large body of published works.

3.1 | Research questions

To effectively conduct a systematic mapping study, it is crucial
to have well‐defined research questions. The research ques-
tions analyse the main attributes of the study, which are code
representation, DL, and tackled software engineering tasks, on
multiple levels. In the following, we present the headlines of
our research questions along with the corresponding detailed
questions.

RQ 1 Main Attributes Analysis

In RQ1, we are primarily interested in which software
engineering tasks, DL models, and code representation ap-
proaches are currently prominently investigated in the field of
study.

RQ 1.1 Software Engineering Tasks: For which software
engineering tasks are DL and code representation being
used?

This research question explores the software engineering
problems that are commonly tackled with DL using the code
representation. This is crucial to contextualise and further
analyse our subsequent findings.

RQ 1.2 DL Models: Which DL models are being used in
conjunction with code representation in software engi-
neering research?

While other review studies DL and SE tasks in more de-
tails, our goal is also to investigate what DL models are spe-
cifically used with a strong emphasis on code representation.

RQ 1.3 Code Representation Approaches: Which code
representation approaches are being used?

Finally, it is evidently important to our study goal to
identify the basic code representation approaches that litera-
ture currently has to offer to software engineering researchers.

RQ 2 Detailed Analysis Based on SE Tasks

Within RQ2, we conduct a deeper analysis of our dataset to
identify which code representation approaches, on one side,
and DL, on the other side, are commonly used to tackle which
kinds of problems. Particularly, we are interested in identifying
characteristics and commonalities of tasks that make them
particularly amenable to a specific type of representation or
model.

RQ 2.1 Tasks and Models: Which DL models are being
used to tackle which software engineering tasks?

Firstly, we correlate software engineering tasks with used
DL models with the goal of identifying which models are
particularly suitable to solve which tasks.

RQ 2.2 Tasks and Representations: Which software en-
gineering tasks and representation approaches are being
used?

Secondly, we further correlate software engineering tasks
with used code representation approaches.

RQ 3 Main Attributes‐ Cross Analysis—Which code rep-
resentation and DL models are commonly used ap-
proaches to solve a specific software engineering task?

In RQ3, we perform the analysis on all three main attri-
butes (task, representation, and model) together to map the
code representation and DL models with different software
tasks.

RQ 4 Hybrid Approach Analysis

In RQ4, we analyse the studies that combine different
approaches in one framework. In the rest of this paper, we will

(a) (b)

F I GURE 2 Graph‐based representations for the code snippet in
Listing 1

354 - SAMOAA ET AL.

be referring to the overall solution presented in the retrieved
studies as the 'framework'. These approaches are considered to
provide valuable characteristics since they have either a wider
scope to solve multiple tasks simultaneously, or more powerful
capabilities in fulfilling many requirements by integrating
multiple representation approaches. However, this integration
between multiple approaches would increase the cost of
implementing these (fairly complex) frameworks.

RQ 4.1 Hybrid Software Tasks: What are the characteris-
tics of frameworks that handle multiple software tasks?
How are the different software tasks processed?

We first scrutinise the studies that are set to solve different
software tasks at once. The overarching aim is to elicit insights
into the strategies followed to tackle multiple different tasks.

RQ 4.2 Hybrid Representation Approaches: Which
frameworks utilise multiple representation approaches?
How are the different representations integrated?

In this research question, we study research that exploits
multiple representation approaches at the same time. We also
examine how this integration is carried out to expand the ef-
ficiency of the framework.

RQ 5 Gaps in the Literature: What are current research
gaps and challenges in the software engineering field?

Finally, our study raises the question which promising areas
are currently underexplored, and warrant future research in the
software engineering field.

3.2 | Literature search and selection

To conduct our study, we followed the process outlined in
Figure 3. We used a two‐step method for literature search.
Firstly, we collected an initial set of candidate papers through a
database search. Secondly, we used iterative backward and
forward snowballing to extent this initial candidate set (the
seed).

For constructing the initial candidate set, we have relied on
a single primary search database (Google Scholar) rather than
aggregating results from different digital libraries, such as the
ACM Digital Library or IEEEXplorer. The reason for this was
two‐fold: (1) Google Scholar has a highly complete index, and
it is unlikely that searching in other libraries would lead to
additional search results, and (2) since we heavily made use of
snowballing, completeness of the initial candidate set was
deemed less crucial (as important missing work would appear
during the snowballing process).

The initial candidate list was generated by executing the
following search term on Google Scholar:

code representation for deep learning

We screened the first five pages of search results based on
paper title and abstract. These potentially relevant papers were
then evaluated with regard to our inclusion criteria (see Sec-
tion 3.3). If a paper matched the criteria, it was added to the
study dataset. After five pages (and initial snowballing), we
have observed saturation, that is, investigation of the next two
pages of search results did not lead to further papers matching
the inclusion criteria. Hence, we stopped the search at this
point.

We used explicit backward and forward snowballing to
extend our initial set of candidate papers: for each selected
paper, we further screened the reference list for additional
relevant papers and also used Google Scholar's “cited by”
functionality to discover later papers that have referenced pa-
pers in our initial set. We applied the same basic strategy to
these additional candidate papers (screening based on title and
abstract, followed by an explicit evaluation of inclusion
criteria). This process has been repeated iteratively until no
new papers could be found.

F I GURE 3 Overview of systematic mapping study process

SAMOAA ET AL. - 355

3.3 | Inclusion criteria

To clearly delineate papers that are within the scope of our
study, we defined the following inclusion criteria:

� I1: Published in 2014 or later. We chose 2014 as a cutoff
point because this was the year the TensorFlow system was
initially released.

� I2: Making use of DL as a core contribution of the paper
and explicitly reporting on the used code representation
approach. To illustrate this criterion, we discuss the
following study as a counterexample [26]. In this study,
Laaber et al. tackled an SE task (predictability of system
performance) and the authors used an artificial neural
network (ANN) as a DL model for that task. However, the
authors do not report on a specific code representation
approach as they relied on the static features of the source
code (e.g., lines of code or the number of loops). Hence, this
study does not match the inclusion criterion I2.

� I3: Reporting on research in the wider field of software
engineering. Particularly, we did not include pure DL
research with no clear connection to software engineering.

� I4: Explicitly reporting (a) what software engineering task is
being addressed, (b) what DL model is being used, (c) what
code representation approach is being used, (d) what pro-
gramming language(s) are being used, and (e) on what level
(lines of code or functions/methods) DL is applied.

I1–I3 define the topical relevance to our study goals. I4 was
important to ensure that all the data required for our study are
actually reported by the papers in our dataset. We did not focus
on publications in a specific venue and also accepted unpub-
lished academic preprints if no published version of the paper
exists. To be selected into the dataset, a paper had to fulfill all
the four inclusion criteria.

3.4 | Resulting study dataset

Applying this literature search and selection procedure resulted
in a dataset of 103 relevant studies, which are listed in
Appendix A.

Figure 4 indicates the distribution of the papers in our
dataset over time between 2014 and 2021. It can be observed
that the number of relevant studies has increased over the
years. With only two relevant publications in 2014 to reach 30
publications in 2019, then we observe a slight decline in 2020
(the last complete year in our study) with 19 publications. It is
also interesting to notice the steadily increasing fraction of
publications in academic journals rather than conferences or
workshops.

In Figure 5, we have summarised the conference venues,
which are common targets in this field of study. Conference
venues with only one publication are not depicted in the figure.
Unsurprisingly, ICLR, which is dedicated to presenting the
advancement in representation learning, is the biggest
contributor to our dataset with nine studies. It is followed by

ICSE, which is widely seen as one of the highest ranked
software engineering conferences, with eight studies, and MSR
with seven studies. A smaller subset of our dataset has been
published in ML venues, such as AAAI, NeurIPS, or ICML, or
in programming languages venue, such as PLDI. The abbre-
viations of the venues presented in Figure 5 are listed in
Appendix B.

3.5 | Data extraction, coding, and analysis

To analyse this dataset that answers the research questions of
this study, a coding taxonomy was developed. The taxonomy is
presented in Table 1. We consider the three categories (code
representation approach, DL model, and Software Tasks) as
primary attributes whereas we mentioned the code‐level and
programming languages in RQ2.3, in part related to code
representation. Following our research questions, we iteratively

F I GURE 4 Number of publications per year. “Others” includes
academic workshops and pre‐prints for which no published versions exist

F I GURE 5 Number of publications per distinct conference venue

356 - SAMOAA ET AL.

developed a coding guide with the following top‐level codes:
(1) programming language, (2) code‐level granularity, (3) used
code representation approach, (4) used DL model, and (5) the
software task. Each publication in the dataset was coded by the
first and second authors according to the taxonomy (in addi-
tion to collecting basic bibliographical information, such as the
publication date and venue) with the other authors serving as
sounding board and helping to resolve possible ambiguities.
The resulting data were then analysed and plotted using Python
scripts. We make the final coding sheet as well as the analysis
script available in a replication package [27].

The detailed coding taxonomy is sketched in Table 1 and
discussed in the following.

Programming Language: while DL is in principle not
dependent on a specific programming language, concrete
feature extraction techniques for code representation need to
be built custom for individual programming languages. In our
study, C, C++, C#, Java, JavaScript, and Python have emerged
as target programming languages.

Code‐Level Granularity: programme code can funda-
mentally be represented on different levels in a code repre-
sentation approach. In our study, we distinguish between
approaches that consider methods, functions, or similar as
atomic unit [5, 28], from those that attempt to represent the
programme code on a statement level [29, 30].

Code Representation: as the main target of this research,
different code representation approaches were distinguished

on a fine‐grained level. We distinguish between token‐based,
tree‐based, graph‐based, and other approaches. For token‐
based approaches, word embedding and n‐grams [31] have
emerged as clearly distinct groups. The only tree‐based ap-
proaches [32] in our dataset are based on abstract syntax tree
(AST). For graph‐based approaches [33], we distinguish be-
tween CFG‐, DFG‐, PDG, and CallFG‐based approaches,
which capture the relation between a statement that calls a
function and the called function [24]. Other code representa-
tion approaches that do not fall clearly into these groups are
bytecode, ASCII, code gadget, latent semantic indexing, and
binary visualisation since each approach has appeared only
once in the retrieved list of papers. More examples for each
approach will be mentioned as part of the discussion of results
in Section 8.2.

DL Models: the main DL models that emerged in our
coding as common methods in software engineering research
are ANN [34], Convolutional Neural Network (CNN) [35],
Recurrent Neural Network (RNN) [36], Graph Neural
Network (GNN) [37], Long‐Short Term Memory (LSTM) [38],
and autoencoder and attention mechanism [39]. Additionally,
three further models [deep belief network (DBN), neural
machine translation (NMT), and deep reinforcement learning
(RL)] emerged in two, four, and one publications, respectively,
and we combine those in the group 'Others'. It is worth
mentioning that we distinguished LSTM from RNN and was
listed as a separate type (and not counted when referring to

TABLE 1 Overview of systematic mapping study coding attributes

Code representation approach

Programming
language

Code‐level
granularity

Deep learning models Software task

Tree
based

Graph
based

Token
based Others Main models Others Task Others

AST CFG Embedding ByteCode C Method level ANN DBN Code clone detection Error handling

DFG n‐grams ASCII C++ Statement
level

RNN NMT Code similarity detection Fixing format

PDG Code gadget C# LSTM RL Programme repair Traceability

CallFG LSI Java CNN Code completion Compiler analysis

Binary
visualisation

JavaScript GNN Programme generation Programme
synthesise

Python Auto‐Encoder Vulnerability detection Malicious
behaviour
detection

Attention
mechanism

Source code classification Performance
prediction

Bug detection Code smell
detection

Code summarisation Type signature
prediction

Identifier generation

Code search

Abbreviations: ANN, artificial neural network; AST, abstract syntax tree; CallFG, call flow graph; CFG, control flow graph; CNN, convolutional neural network; DBN, deep belief
network; DFG, data flow graph; GNN, graph neural network; LSI, latent semantic indexing; LSTM, long short‐term memory; NMT, neural machine translation; PDG, programme
dependency graph; RL, reinforcement learning; RNN, recurrent neural network.

SAMOAA ET AL. - 357

RNN) since there are frameworks that combine AST with
LSTM, which is referred as tree LSTM [23], and other
frameworks that combine AST with RNN, which is referred as
RvNN [22].

Software Engineering Tasks: to identify for which
projects' code representation gets used, we also extracted the
one or multiple software engineering tasks from the papers in
the dataset. We observed that many common fields of study
within software engineering were present. Particularly, we
observed works related to code clone detection, code simi-
larity detection [4], programme repair, programme generation
[40], vulnerability detection [41], source code classification [1],
bug detection [42], code summarisation [43], identifier gen-
eration [44], and code search [45]. Other tasks that emerged,
but were investigated less frequently, were related to fixing
formatting [46], traceability [47], compiler analysis [24], pro-
gramme synthesis [10], malicious behaviour detection [48],
performance prediction [49], code smell detection [50], and
error handling [51].

3.6 | Data validation

To conduct a preliminary validation of the completeness of our
data set, we selected five recent studies from high‐profile
software engineering venues that applied machine learning to
one of the tasks in our study (see Table 1). We checked each
reference cited by these recent studies against our inclusion
criteria and validated for each study matching our criteria,
whether they were indeed contained in our study set. No
publications have been found to be missing.

3.7 | Threats to validity

Despite following a well‐defined methodology, a review study
such as ours is always subject to limitations and threats to
validity. We use the classification proposed by Ampatzoglou
et al. [52] to contextualise these threats.

� Construction of the Search Process and General-
isability: We chose to construct our dataset based on an
initial search on Google Scholar followed by extensive
snowballing, rather than a more conventional search strategy
using major digital libraries, such as Scopus, IEEE Xplore,
ScienceDirect, or the ACM Digital Library. We argue that
relying on snowballing leads to a more complete and
comprehensive dataset than traditional search, which suffers
from limitations due to inconsistent naming and

terminology. However, one challenge is that it is hard to
conduct an identical replication of our study since Google
Scholar personalises search results. To mitigate this threat,
we provide a replication package that includes all studied
manuscripts as well as our resulting coding sheet.

� Study Inclusion/Exclusion Bias: DL is a rapidly growing
area of research within software engineering. Hence, we
needed to make decision when to stop accepting newly
appearing papers into our dataset. While we do not believe
that the overall findings would have been impacted if we had
collected studies for a longer period of time, readers should
still take our data collection period in mind when inter-
preting our results.

� Validity of Primary Studies: Four studies in our dataset are
pre‐prints retrieved from arXiv. While those are not peer‐
reviewed, the included studies are highly cited and highly
influential in our field. Hence, we consider it important to
include them in the analysis despite the threat that is
introduced by the lack of peer review.

� Data Extraction Bias: While many of our coding di-
mensions lend themselves to objective categorisation,
judgement calls still needed to be made in some cases. In
these cases, we discussed among the author group to reach a
consensus decision.

4 | AN OVERVIEW OF USAGE OF DEEP
LEARNING IN SE TASKS

This section allows us to establish a general “process” over-
view of the steps required to make DL work in software en-
gineering. While it is not expected that this general framework
will differ drastically from DL in other domains, it will allow us
to put the rest of the survey in context, identify the place of
code representation in this general process, and serve as a
guiding rail for novices to the domain. Thus, we provide a
general framework of code representation and DL models'
usage for tasks in software engineering based on the reviewed
studies. This model has emerged from qualitatively investi-
gating the DL models of the studies in our dataset.

4.1 | High‐level process

The resulting model is depicted in Figure 6. Unsurprisingly, the
high‐level architecture is comparable to the usage of DL in
other domains and consists of the well‐known phases of data
collection, data preparation and preprocessing, as well as
learning and validation.

F I GURE 6 Abstracted general code representation and DL models in software engineering

358 - SAMOAA ET AL.

Data Collection: The process starts with data collection,
which in the domain of software engineering typically entails
collecting the source code files for a specific programming
language (e.g., through repository mining). Subsequently, the
dataset needs to be annotated to serve as a training set. The
annotation process is custom to the specific software engi-
neering task that is intended to be tackled, for example, bug
prediction evidently requires different annotations than, for
example, code clone detection. The dataset is either ready and
pre‐annotated by domain experts or the researchers that
conduct the study annotate the source code themselves. An-
notations are task‐specific and may for example, include in-
formation about the presence of bugs, or if the two code files
are to be considered code clones [53].

Data Preparation and Preprocessing: Afterwards, in the
data preparation and preprocessing phase, the collected code
must be represented in a form that is compatible with DL.
This is where code representation, the main subject of our
study, comes into play. For example, in an AST representation,
the collected code is converted into a tree form; then the tree
paths need to be encoded or embedded as numeric values
(vectorisation) using approaches such as one‐hot encoding or
word embedding. On the contrary, in a graph‐based repre-
sentation, a variety of graph embedding techniques are used,
such as Graph2vec [54], HOPE [55], SDNE [56], or Node2vec
[57]. Features can now be extracted from those vectors
through different approaches, such as convolutional or
sequential neural networks.

Learning and Validation Phase: Finally, the DL model
will be trained and validated based on the tackled software
engineering task.

4.2 | Examples

To concretise this process, we now present two examples of
publications that follow the framework shown in Figure 6.

Example 1 (Zhang et al. Retrieval‐based neural source code
summarisation, ICSE020):

The first example [58] proposes a framework for (infor-
mation retrieval) based neural source code summarisation. The
solution specifically makes use of an attention encoder‐decoder
model. Figure 7 depicts the approach using the model intro-
duced previously.

After collecting training data as a first step, source code is
represented as ASTs, which are then turned into syntactic to-
ken sequences by tree traversal. Then, a trained encoder based
on LSTM units is used to embed the code into a semantic
vector using pooling, which is used to progressively reduce the
spatial size of the representation to reduce the amount of
parameters and computation in the network and preserve the
most important features. Afterwards, a bidirectional LSTM
decoder is used to capture the semantic context to generate
natural‐language summaries. The motivation behind this so-
lution is that recent studies that use models of neural networks
prefer high‐frequency words in the corpus while struggling
with low‐frequency ones. The proposed method takes advan-
tage of both neural and retrieval‐based techniques to alleviate
this problem.

Projecting Figure 7 on the main representative Figure 6,
the code fragment part maps the data collection from AST to
semantic vector is mapped to data preparation and pre-
processing. The attention part, along with the bidirectional‐
LSTM decoder, presents the learning and validation phase.

Example 2 (Wang et al. Detecting code clones with graph
neural network and flow‐augmented abstract syntax tree,
SANER020):

A second example [59] uses code representation and DL
for code clone detection. In this work, and as shown in
Figure 8, the authors treat the AST as a graph by following a
flow‐augmented abstract syntax tree (FA‐AST) to build a graph
representation for code fragments. This is done by adding
edges representing control and data flow to the AST. Graph
representation is applied here as AST‐based approaches cannot
fully leverage the structural information of code fragments,
especially semantic information, such as the control and data
flow. After representing the AST as a graph, the vectors of

F I GURE 7 An example framework for code summarisation, based on Zhang et al. [58]. AST, abstract syntax tree; LSTM, long short‐term memory

F I GURE 8 An example framework for code clone detection based on Wang et al. [59]. AST, abstract syntax tree; FA‐AST, flow‐augmented abstract syntax
tree; GGNN, gated graph neural network; GMN, graph matching network

SAMOAA ET AL. - 359

nodes are pooled into a graph‐level vector representation.
Hence, two different types of graph neural networks (GNN)
are used: a gated graph neural network (GGNN) for graph
embedding and a graph matching network (GMN), which can
jointly learn embedding for a pair of graphs.

When mapping the approach explained in Figure 8 to the
common architecture in Figure 6, the code fragment is part of
data collecting, while going from AST to GGNN represents
data preparation and preprocessing. Finally, the GMN is part
of the learning and validation phase.

5 | MAIN ATTRIBUTES ANALYSIS

In this section, we will answer RQ1 by exploring this study's
three main attributes in isolation. We answer the question
about which software engineering tasks are tackled by the
studies in our dataset, and what code representation and DL
approaches are being used to do so.

5.1 | Software engineering tasks

DL is used for a large variety of different tasks in software
engineering. Hence, to answer RQ1.1, we cluster the tasks into
four broad groups inspired by work from Microsoft1 based on
high‐level techniques and goals. Groups and concrete tasks, as
well as their absolute and relative frequencies in our dataset, are
shown in Table 2. It should be noted that the sum of per-
centages does not add up to 100% as some publications tackle
multiple problems simultaneously.

Code‐Code: the model's input is the code, and the model's
output is also a source code (e.g., complete programs or code
snippets). Example of tasks clustered under code‐code are
clone and similarity detection, code completion, programme
generation and repair. Less‐frequent code‐code task in our
dataset (grouped as “other”) is fixing formatting, traceability,
and compiler analysis. Code‐code tasks are a natural fit for DL
and hence a frequent target in our dataset, representing 46% of
all studies. Code clone detection is the most frequent individual
task, followed by the (very related) task of code similarity
detection and programme repair.

Code‐Text: the input of the learning model is code,
whereas the output is (often natural‐language) text. A canonical
example of this type of task is code summarisation, where the
goal is to produce natural language summaries of source code
constructs. The only other code‐text task we found is identifier
generation, which includes suggestions of method or variable
names based on code information. As a group, code‐text ap-
proaches represent about 20% of the studies in our dataset.
However, this is primarily due to code summarisation indi-
vidually being a common area of interest in DL for software
engineering (representing 15% of the studies). Identifier

Generation appears in 7 studies. The total count of the papers
that tackle code‐text is 21, as one study [60] is about both,
summarisation and identifier generation.

Text‐Code: this group is the opposite of the previous
group, where the input is the natural language text with code
output. The only two tasks in our dataset of this type are
code search and programme synthesis. As for code search, it
uses the query text to find the corresponding source code.
This task represents about 5% of the dataset. Programme
synthesis, on the other hand, takes free text descriptions of
programme functions as an input and returns source code as
an output. There is only one study in our dataset that tackles
this task.

Code‐Prediction: finally, DL can be used to predict
qualities based on code, such as detecting vulnerabilities,
bugs, or malicious behaviour. We also group source code
classification in this category. Two studies are grouped as
“other” in this group: error handling and code smell detec-
tion. As a group, code‐prediction is quite prevalent, ac-
counting for 37.8% of the studies in our dataset. Within this
group, different tasks are well distributed with the most
common one being bug detection (14%) followed by
vulnerability detection (11%).

We present the complete mapping of papers to our tax-
onomy of SE tasks in Appendix C.

TABLE 2 Number and percentage of publications classified per
addressed software engineering task

Code‐code 46 (44.7%)

Code clone detection 16 (15.5%)

Code similarity detection 9 (8.7%)

Programme repair 9 (8.7%)

Code completion 7 (6.8%)

Programme generation 6 (5.8%)

Other 3 (2.9%)

Code‐prediction 39 (37.8%)

Bug detection 14 (13.6%)

Vulnerability detection 11 (10.7%)

Source code classification 6 (5.8%)

Performance prediction 2 (1.9%)

Type signature prediction 2 (1.9%)

Malicious behaviour detection 2 (1.9%)

Others 2 (1.9%)

Code‐text 21 (20%)

Code summarisation 15 (14.6%)

Identifier generation 7 (6.8%)

Text‐code 6 (5.8%)

Code search 5 (4.9%)

Programme synthesis 1 (1%)

1
https://www.microsoft.com/en‐us/research/blog/codexglue‐a‐benchmark‐dataset‐
and‐open‐challenge‐for‐code‐intelligence/

360 - SAMOAA ET AL.

https://www.microsoft.com/en-us/research/blog/codexglue-a-benchmark-dataset-and-open-challenge-for-code-intelligence/
https://www.microsoft.com/en-us/research/blog/codexglue-a-benchmark-dataset-and-open-challenge-for-code-intelligence/

RQ 1.1 Summary We categorise the studies in our dataset in
four main groups, depending on the inputs and outputs
of DL. Code‐code and code prediction tasks are most
prevalent in our data. Code‐text and text‐code studies
are more limited; however, these are also 'smaller'
groups with a lower number of concrete subtasks.

5.2 | Deep learning models

We now present the DL models used in the retrieved studies,
as per RQ1.2. Various DL models have been identified in
software engineering research. A graphical overview is given in
Figure 9. LSTM [38], which is a type of RNN, is the most used
DL approach and found in 49 (48%) studies. LSTM copes with
the problem of RNNs known as “vanishing gradients” by
adding the mechanism of “cell states” to selectively remember,
or forget, part of the information that is needed during training
[61]. Attention mechanism [39] and CNN [62] are the second
and third most used DL models with 35 and 28 publications,
respectively. CNNs are particularly efficient since they can
work in parallel on sequences and have a structure for which
the output and input have a logarithmic distance in terms of
layers, which is linear for RNNs and LSTMs. The use of CNNs
together with an attention mechanism (specifically “self‐
attention”) defines the architecture of 'Transformers'.
Autoencoders [63] and RNNs are almost equally present. The
least applied DL models in our dataset are ANN and GNN.
The category 'Other' includes deep belief networks, neural
machine translation, and reinforcement learning.

It should be noted that counts in Figure 9 add up to
substantially more than the total number of studies in our
dataset (103) as many papers in practice combine multiple DL
models. Particularly, we observe that there are specific DL
models that are commonly used together for solving specific
downstream tasks, such as studies that use attention mecha-
nisms. The attention mechanism emerged as an improvement
over the encoder decoder‐based neural machine translation
system based on encoder‐decoder RNNs/LSTMs. Both
encoder and decoder are stacks of LSTM/RNN units. Further,

hybrid DL models are commonly used for tasks in the code‐
text or text‐code groups as these require different models for
different input and output. These issues will be discussed in
more detail in Section 6.1.

RQ 1.2 Summary Software engineering research uses a wide
variety of DL models with LSTM and attention mech-
anisms currently receiving most attention.

5.3 | Source code representation

We now turn towards what representations are being used in
conjunction with these DL models to answer RQ1.3. We
analysed the source code representation approaches that are
utilised to encode source code into a form that is meaningful
and can be fed into ML models. Three primary (groups of)
techniques have emerged from our analysis: token‐based rep-
resentation, tree‐based representation, and graph‐based rep-
resentation. Five concrete representation approaches emerged
that do not clearly belong into any of these groups and have
hence been categorised as 'Other'. These are code gadget (the
number of lines of code that are semantically related to each
other [64]), binary visualisation (the raw representation of any
type of file stored in the file system, which exhibits similar
behaviours of the code while being syntactically different [65]),
ASCII which used by Wang et al. [66] to convert each letter of
JavaScript code into eight bit binary, latent semantic indexing
(LSI, a method of analysing a set of documents in order to
discover statistical co‐occurrences of words that appear
together which then give insights into the topics of those
words and documents [47]), and bytecode (in this representa-
tion, a code fragment is expressed as a stream of bytecode
mnemonic opcodes forming the compiled code [67]). An
overview over the prevalence of the four groups is given in
Figure 10.

F I GURE 9 Summary of DL models used in conjunction with code
representation in software engineering research F I GURE 1 0 Summary of code representation approaches

SAMOAA ET AL. - 361

All three groups see frequent use in software engineering.
Tree‐based and token‐based representations are most common
and are both utilised in over half of the studies in our dataset
(66% or 64% and 54% or 52%, respectively). As before, some
studies employ multiple representation approaches simulta-
neously. Graph‐based approaches are less common and only
used in 25 (24%) of studies, but the usage is increasing. The
remaining techniques are only used in five individual
publications.

For tree‐based representation, the only specific technique
that emerged from our study is AST. However, both token‐
based and graph‐based representations can be split up into
further subcategories. For token‐based approaches, these are
word embedding and n‐grams, with word embedding being the
dominant technique (used in 37% or 79% of the studies using a
token‐based approach, see also Figure 10).

There are a larger number of choices of graph‐based
representations, which are depicted in Figure 10. The most
common ones are CFG (17% or 45%). Other options include
PDG, DFG, and CallFG.

5.3.1 | Alternative representation approaches

In contrast, some studies have made use of code represen-
tation approaches without direct adoption of any of the
methods that are categorised in Table 1. To take token‐based
approaches as an example, some works have tokenised the
text without using word embedding or n‐grams techniques.
In a study by Fernandes et al. [68], the proposed framework
breaks up all identifier tokens (i.e., variables, methods, classes,
etc.) of the source code into sub‐tokens by splitting them
according to specific heuristics (camelCase and pascal_case).
Gupta et al. [69] use an encoding map for each programme
to map every token, based on its type (such as function,
literal, variable, etc.), to a unique name in a pool of names.
Similarly, there is a subset of graph‐based solutions that have
not used any graph‐based methods that are classified in
Figure 10. Yasunaga and Liang [70] have proposed a
programme‐feedback graph to model the reasoning process
and capture the semantic correspondence involved in pro-
gramme repair. Similarly, Fernandes et al. [71] extend
sequence encoders with a graph neural network that can
reason about long‐distance relationships. Finally, Brocksch-
midt et al. [72] decode the code in a graph representation
using GNN for partial programs to incorporate rich semantic
information that is useful in programme repair tasks.

5.3.2 | Code representation depending on code‐
level granularity

Another question our review can answer is whether different
code representation approaches are more commonly used to
handle code on the statement or method levels. The results of
this analysis are shown in Table 3.

As we can see, there is no clear‐cut difference in the usage
of representation approaches depending on the code level.
However, token‐based approaches are slightly more commonly
used in studies that work with code at a statement level. This
intuitively makes sense as such studies are less concerned with
preserving the syntactical or semantic context of a software
project.

5.3.3 | Code representation for different
programming languages

As a final exploration of code representation approaches, we
map which programming languages the studies in our corpus
use. This is shown in Figure 11.

Unsurprisingly, Java is by far the most commonly consid-
ered programming language and is considered in over half the
studies in the corpus (58 studies, or 56%). This can be
explained by the wide availability of parsing tools that parse
Java code into AST, which is compatible with the findings in
Figure 10 that show AST to be the most common represen-
tation approach. Examples of common Java parsers are the
Eclipse Java development tools (JDT) used by Büch and
Andrzejak [73], SrcML [74] used by Bui et al. [4], or JavaParser
used by Alon et al. [75]. However, SrcNL is a universal AST
system that uses the same AST representations for multiple
languages (Java, C#, C++, and C)

For graph‐based representation approaches, different
tooling is required. For example, Ben‐Nun et al. [48] convert
Java code to statements in an Intermediate Representation (IR)
using the LLVM Compiler Infrastructure [76], which is then
processed to contextual flow graphs. Mehrotra et al. [6] use the
Soot optimization framework [77] to build program depen-
dence graphs for Java code, followed by the Cytron's method
[78] to compute control dependence. Reaching definition [79]
and upward exposed analysis [80] are both used for computing
data dependence graphs.

TABLE 3 Main code representation approaches and code‐level
granularity

Token (%) Tree (%) Graph (%)

Statement level 73 71 64

Method level 27 29 36

F I GURE 1 1 Programming languages considered in the dataset

362 - SAMOAA ET AL.

RQ 1.3 Summary All three main groups of code representa-
tion introduced in Section 2 are used in literature with
tree‐based and token‐based code representations being
most prevalent. It is also notable that a substantial
number of publications use a hybrid representation
approach, combining multiple different representations.

6 | DETAILED ANALYSIS BASED ON
SOFTWARE ENGINEERING TASKS

So far, our analysis discussed the three main dimensions of the
study (tasks, DL models, and code representation approaches)
in isolation. Now, we turn to investigating the interplay be-
tween these dimensions as part of RQ2. Particularly, we
investigate how DL models and chosen representation depend
on tasks (Sections 6.1 and 6.2, respectively).

6.1 | Software tasks and DL models

In this section, we will discuss the results that explain RQ2.1,
where we map the chosen DL models to tackle software en-
gineering tasks. Figure 12 depicts a mapping of specific DL
models identified in the study to the four high‐level categories
of tasks as a bubble plot.

We observe that a wide variety of models have been applied
to the tasks in the code‐code group, whereas there appears to
be more dominant methods for code‐text (LSTM with
autoencoders and attention mechanisms) as well as code‐
prediction (CNN and LSTM). The data for the text‐code
group are too sparse to come to a clear conclusion, but
initial evidence suggests that researchers also use a variety of
models for this task. Further, LSTM is commonly used and
proportionally distributed for all types of tasks. However,
CNN is most frequently used for tasks in the group code‐
prediction. Both, autoencoders and attention mechanisms are
used frequently for code‐code and code‐text tasks, but rarely
for other tasks.

Figure 13 drills deeper into this and depicts the usage of
different DL models for specific tasks in the code‐code group.
We observe that a variety of models are used for all specific
tasks.

In programme repair, some approaches use sequence to
sequence networks with encoder‐decoder models attached
with attention mechanisms. Bi‐directional LSTM is mainly
used in both encoder and decoder. However, attention might
be used in the decoder part [40] or in encoder [70]. However,
other approaches for handling programme repair do not rely
on the encoder‐decoder model. For example, Vasic et al. [81]
use LSTM and attention mechanism to locate and handle the
misuse of the variable defined in the programme. Other studies
rely on sequential models for handling programme repair
without using the encoder‐decoder attention model [69, 82],
whereas Dinella et al. [83] rely on graph neural networks for
learning graph transformation to repair the bugs in the Java-
Script programs.

Figure 14 presents a similar analysis for specific code‐text
tasks. It becomes evident that autoencoders are an important
facet of contemporary code summarisation research. These
approaches are based on the sequence‐to‐sequence paradigm
over the words of some text with a sequence encoder (typically
a RNN, but sometimes using self‐attention [12]) processing the
input and a sequence decoder generating the output. Recent
successful implementations of this paradigm have substantially
improved performance by focussing on the decoder, extending
it with an attention mechanism over the input sequence and
copying facilities [68]. However, while standard encoders (e.g.,
LSTMs) can in theory handle arbitrary long‐distance relation-
ships, in practice, they often fail to handle long texts (sum-
marisation output) correctly [84].

RQ 2.1 Summary Most of the software tasks studied are
mainly tackled using the LSTM model. However,
autoencoders and attention mechanisms are also widely
adopted, particularly in code‐code and code‐text tasks. A
high number of code‐prediction publications utilise
CNNs.

F I GURE 1 2 Software engineering tasks and applied DL approaches. ANN, artificial neural network; CNN, convolutional neural network; DL, deep
learning; GNN, graph neural network; LSTM, long short‐term memory; RNN, recurrent neural network

SAMOAA ET AL. - 363

6.2 | Software tasks and code representation

We now turn towards RQ2.2 and explore how the choice of
code representation approach is impacted by the chosen
software engineering task. An overview for the four groups of
tasks is provided in Figure 15.

We observe that the various code representation ap-
proaches are used across software engineering tasks. Text‐code
tasks are commonly addressed using token‐based approaches.
Only one study uses a tree‐based approach for this type of task
[10], and none uses a graph‐based approach. However, this
study handles multiple tasks within the same study. More

specifically, the authors have built multiple representations to
handle tasks separately. The tree‐based approach addresses
code summarisation (a code‐text task), whereas a token‐based
approach is used for code retrieval (text‐code). Hence, we
conclude that for text‐code tasks, for example, code search, a
token‐based representation is the only method that is seeing
current use. This can be explained as the freeform text of, for
example, a query is better treated using natural language pro-
cessing (NLP) techniques than the more code‐specific tree‐
and graph‐based representations.

Graph‐based approaches are most commonly used in
code‐code tasks. However, also 38% of graph‐based

F I GURE 1 4 Applied DL approaches for specific code‐text tasks. ANN, artificial neural network; CNN, convolutional neural network; DL, deep learning;
GNN, graph neural network; LSTM, long short‐term memory; RNN, recurrent neural network

F I GURE 1 5 Code representation approaches per group of software engineering tasks

F I GURE 1 3 Applied DL approaches for specific code‐code tasks. ANN, artificial neural network; CNN, convolutional neural network; DL, deep learning;
GNN, graph neural network; LSTM, long short‐term memory; RNN, recurrent neural network

364 - SAMOAA ET AL.

approaches are used for code‐prediction tasks. To better un-
derstand this observation, we have again detailed further into
specific tasks. In Figure 16, we present how often specific tasks
in the code‐code groups use a graph‐based approach to
represent the source code.

Both code clone and code similarity detection are pro-
portionally overrepresented here. This is interesting, especially
since these tasks have many similarities. It can be argued that a
graph representation is highly appropriate for solving the
problem of identifying similar code elements. By representing
code snippets as a graph, those graphs are embedded into
vectors (one vector for each graph). To measure the similarity,
one can then simply compute the distance between those
graphs. This approach is arguably more simple and effective
than breaking each piece of code into tokens and then
embedding each token into a vector.

We now conduct a similar analysis for the usage of graph‐
based representations in code‐prediction tasks (Figure 17). We
observe that graph‐based representation approaches are
commonly utilised in vulnerability and bug detection, together
amounting to about two thirds of all usage of graph‐based
representation in code‐prediction tasks. For these ap-
proaches, researchers commonly need to preserve semantic
information for which graph representations are most suitable.

RQ 2.2 Summary We were not able to identify a clear
pattern that specific representations are more common
for specific types of tasks with one exception: text‐code
tasks frequently call for token‐based methods. Aside
from this, software engineering researchers have tested
different combinations of representations and tasks, and
no clear consensus what the ideal way to address any
specific task (except text‐code tasks) has emerged yet.

7 | MAIN ATTRIBUTES – CROSS
ANALYSIS

We now discuss the interplay of all three dimensions of this
study—tasks, DL approach, and code representation approach,
answering RQ3. In the previous sections, we have separately
analysed the three dimension task, DL model, and code rep-
resentation approach. To answer RQ3 and get deeper insights
into the current trends in the field, we now investigate all three
dimensions together. Results of this analysis are summarised in
Table 4.

LSTM is the most commonly used model for code‐code
tasks, using both tree‐ and token‐based representations as

TABLE 4 Analysis of the main attributes

F I GURE 1 6 Usage of graph‐based representation for specific code‐
code tasks

F I GURE 1 7 Usage of graph‐based representation for specific code‐
prediction tasks

SAMOAA ET AL. - 365

well as, to a certain extent, autoencoders. In contrast, LSTM
and autoenconders are almost equally frequently used for code‐
text tasks. LSTM and autoencoders go hand to hand in solving
sequential problems by treating the code as a sequence of to-
kens (using a token‐based representation) or sequence of
nodes (in the tree‐based representation). Hence, sequential
models, such as LSTM, are the most appropriate approach for
such a problem. The sequential model needs to be encapsu-
lated into an encoder‐decoder model because for a code‐text
task, it is necessary to encode the code consistently through
one model in order to generate natural language sequences
from the corresponding source code. Attention mechanisms
are used to dynamically select the distribution over the com-
bined representations while decoding or encoding is selecting
the relevant path in the AST [85].

Unsurprisingly, GNN is the most commonly used archi-
tecture in conjunction with a graph representation in the ma-
jority of SE tasks. In contrast, no common DL models can be
identified for text‐code tasks across all the representations.
Instead, various different models are used across the studies in
our dataset. This is because the text that represents the input in
a text‐code task can be treated using natural language pro-
cessing (NLP) techniques, which according to literature, all DL
models work properly on.

As for code‐prediction tasks, CNN is the most dominant
model in conjunction with a tree‐based representation, while
LSTM is most commonly used for a token‐based representa-
tion. This difference is rooted in the different goals underlying
tasks in the code‐prediction group—in these tasks, the goal is
not to generate code as in code‐code and text‐code tasks, or
generating text as in code‐text tasks. Much more, code‐
prediction tasks tend to deal with classical DL prediction
problems, that is, classification and regression. For instance,
bug or vulnerability detection is a binary classification problem
to decide whether or not the code includes a bug or vulnera-
bility. The same is true in performance prediction, where a
specific performance value is predicted as a regression problem.

RQ 3 Summary We analysed the retrieved frameworks from
the viewpoint of the main three dimensions of our
study, software task, code representation approach, and
deep learning model applied. LSTM and autoencoders
are the most used deep learning for code‐code and code‐
text tasks using tree‐based and token‐based representa-
tions. While GNN is the most used model with graph
representation with most of the SE tasks. For code‐
prediction, CNN with tree‐based representation and
LSTM with token‐based representation are the most
common techniques used in the studies.

8 | ANALYSIS OF HYBRID
APPROACHES

In this section, wewill answerRQ4by exploring frameworks that
address either multiple SE tasks or which use multiple repre-
sentations. We refer to such studies as using a hybrid approach.

8.1 | Hybrid software tasks within one
framework

In this section, we address RQ4.1 and identify characteristics
and main properties of frameworks that solve multiple SE
tasks simultaneously. No study in our dataset is general in the
sense that it is able to addresses all SE tasks.

8.1.1 | Solving many tasks with one framework

Bui et al. [10] propose an approach that integrates three
different tasks—it tackles code similarity detection as a code‐
code task, code search as text‐code tasks, and code summa-
risation as a code‐text task. This study is singular in that it
combines text‐code tasks with other SE tasks. The proposed
method is a self‐supervised learning framework for source
code modelling designed to mitigate the need for labelled data
for different SE tasks. The key innovation here is that the
source code model is trained to detect the similarity and
dissimilarity across code snippets. This study also makes use of
a hybrid representation approach, by merging an AST‐based
strategy with a token‐based approach. The representation ap-
proaches are used in the encoder component of the discussed
system. Hence, well‐know AST‐based code modelling tech-
niques, such as Code2vec [44], TBCNN [3] are used besides
token‐based approaches by handling the source code as a
sequence of tokens using a neural machine translation (NMT)
baseline. Those techniques utilise node type and token infor-
mation to initialise AST nodes. The hybrid representation
approach will be discussed in more detail in Section 8.2.
Throughout this approach, various encoders are used, and the
choice of encoder depends on the task.

8.1.2 | Frameworks that solve two tasks

Besides the aforementioned study, we find that three other
approaches tackle combinations of code‐code and code‐text
tasks. Cvitkovic et al. [60] design a framework that solves
code completion as a code‐code task and identifier generation
as a code‐text task. They use ASTs to represent the source
code. This tree is augmented with semantic information, such
as data– and control–flow to eventually obtain an augmented
AST as a directed multigraph. The augmented AST is then
further augmented by adding a Graph Structured Cache. They
add a node to the augmented AST for each token in the input
instance. Then, all the nodes are vectorised to be processed
than with the graph neural network.

Kang et al. [86] evaluate the generalisability of the
Code2vec modelling technique by applying it along with a
sequential model to address code clone detection as a code‐
code task as well as code summarisation as a code‐text task.
Then, they compare the results obtained from these techniques
with a task‐specific baseline. In this study, the authors do not
focus on the overall effectiveness of the methods. Instead, they
evaluate if the use of Code2vec can improve the performance

366 - SAMOAA ET AL.

of the baselines. Based on their results, the authors claim that
no improvements had been achieved by applying Code2vec.

Code summarisation is also investigated through one
framework proposed by Wei et al. [87] that is generalised to
solve programme synthesis as a text‐code task. They use a
token‐based approach for code representation. The proposed
framework consists of three main parts: a code summarisation
model, a programme synthesis model, and dual constraints.
The code summarisation and programme synthesis models
both rely on a sequence‐to‐sequence neural network and an
encoder‐decoder attached with attention mechanism between
encoding and decoder. To leverage the contextual information
within the word embedding, a token‐based, bi‐directional
LSTM is used as a unit in the encoder. Another LSTM is
also used in the decoder. Dual constraints are used by adding
regularisation terms in the loss function to constrain the duality
between two models, which are enlightened by the probabilistic
correlation and the symmetry of attention weights between
code summarisation and programme synthesis models.

Finally, four studies design solutions that are transferable
across code‐code and code prediction tasks [21, 81–83]. Three
of those proposed frameworks that tackle programme repair as
code‐code tasks and bug detection as code prediction tasks.
These tasks are related in the sense that a bug is first detected
in the code, which is subsequently fixed through programme
repair. Hence, it makes sense to have one solution that ad-
dresses these tasks simultaneously. In the same context, one of
those studies [83] uses a hybrid code representation approach
by combining tree‐ and graph‐based approaches. Thus, code is
parsed into an AST to capture the programme's syntactic
structure; then, the leaf nodes are connected with SuccToken
edges. Additionally, the value of nodes that store the content of
the leaf nodes is added with special semantic ValueLink edges
connecting them together. Based on the study, the ultimate aim
of introducing this additional set of nodes is to provide a
name‐independent strategy for code representation and
modification. After representing the programme as a graph, a
GNN is used to map the graph into a fixed dimension vector
space. An LSTM is then trained to locate the bug through a
sequence of graph transformations. That means that, given a
buggy programme modelled by a graph structure, the pro-
posed framework makes a sequence of predictions, including
the position of bug nodes and corresponding graph edits to
produce a fix.

The other related approaches [81, 82] use only a token‐
based approach combined with LSTM to locate and repair
the bug in the programme. Moreover, the fourth study in this
group [21] defines an AST‐based neural network for source
code representation in order to solve code‐clone detection as a
code‐code task and code classification as a code‐prediction
task. This study discusses the problem of the long depth of
the AST, which causes a long dependency between the
sequence of nodes, leading to vanishing problems when
injected into the sequential model. Thus, the tree is divided
into a sequence of small statement trees. Those trees are
encoded to be used with a bidirectional RNN model to
leverage the naturalness of statements to achieve the tasks.

Statement trees are constructed using the preorder traversal
algorithm.

It is interesting to observe that no study in our dataset
proposes a framework that addresses a combination of code‐
text and code‐prediction tasks, nor combinations of code‐
prediction and text‐code tasks.

RQ 4.1 Summary The integration between multiple tasks
within one framework relies on the relatedness between
these tasks. However, there currently appears to be no
truly general framework for DL in software engineer-
ing, which could be applied independently of the tackled
software tasks.

8.2 | Hybrid representation approaches

Some studies have utilised a hybrid approach for code repre-
sentation to capture more information on the source code.
This is often promising as tree‐based approaches capture
syntactical information, graph‐based approaches are better at
retaining semantics, and token‐based approaches preserve
lexical information.

Table 5 summarises how often different types of code rep-
resentation approaches are used alone or in conjunction. The
diagonal elements represent the frequency of the frameworks
that have used a single representation approach, while the non‐
diagonal elements represent the frequency of the frameworks
that have used hybrid representations. Seven studies [5, 7, 21, 42,
67, 88, 89] combined representations from all three groups. The
most common hybrid approach is a combination of token‐ and
tree‐based approaches, used by 25 studies, or almost a fourth of
our dataset, in total (note that 18 approaches combine only tree‐
and token‐based representation, plus the seven studies that use
all three). Combinations of tree‐ and graph‐based approaches
are also fairly popular, used by 16 studies in total.

Particularly interesting are the seven studies that have used
all three representation approaches in conjunction. For
example, Hua and Li et al. [7, 42] present work on bug
detection. The two approaches start with constructing AST
representations of the source code in order to locate sensitive
point‐like object construction, method invocation, expression
statement, conditional statement, and loop statements. Sensi-
tive points are the syntax characteristics where most 'simple'
bugs manifest. Then, Word2Vec [20], a token‐based repre-
sentation approach, is employed by taking all of the AST nodes
of a method as the input and generating a learned vector
representation for each given AST node. This vector

TABLE 5 Frequency of combinations of (types of) representation
approaches

All = 7 Token Tree Graph

Token 25 18 4

Tree 32 9

Graph 5

SAMOAA ET AL. - 367

representation is later used as input to the DL model. How-
ever, the local context of the method representation from AST
node representations is preserved by representing each path as
an ordered set of node vectors. Since the bug can be involved
in multiple methods, it is crucial to capture also the global
context by modelling the relations between different methods
through a dependency graph (a PDG). Thus, semantic infor-
mation in the source code, such as data and control flow, is
traced. Then, when the graphs are generated, different
embedding techniques for graphs are used on nodes, edges or
the entire graph. For example, Node2Vec [90] is used to vec-
torise the nodes.

Similarly, other studies that use all three representation
approaches are tackling code clone detection [5, 21, 67]. These
studies show that using a stream of identifiers to represent the
code, DL can effectively replace manual and hand‐crafted
feature engineering. Moreover, these works show that repre-
sentation of the code at different levels of abstraction (iden-
tifiers, AST, and CFG) can provide a different, yet orthogonal,
view of the same code fragment, thus enabling more reliable
detection of code similarities.

Sonnekalb and Li et al. [42, 89] investigate a combination
of all three main representation approaches for the task of
vulnerability detection. These studies claim that there is a need
to represent programs in a way that can adequately accom-
modate the syntax and semantic information related to vul-
nerabilities. This enables multiple kinds of neural networks to
detect various kinds of vulnerabilities.

RQ 4.2 Summary 62 (60%) frameworks of the retrieved
studies have used only one type of representation
approach, while 31 (30%) studies have combined repre-
sentations from two groups. Seven (7%) studies utilised
representations of all three main groups in conjunction.

9 | GAPS IN THE LITERATURE

In this section, we will discuss perceived limitations, research
gaps, and challenges that we derived from the retrieved studies,
addressing RQ5.

� Lack of Topic Coverage: Even though we have found DL
to be applied to a wide variety of SE tasks, some crucial
tasks appear to be underrepresented. For example, we have
identified only one or two studies each tackling performance
prediction, code smell detection, or traceability. This is
surprising, as these tasks could profit substantially from an
investment in DL. Taking performance prediction as an
example, performance is often seen as a crucial non‐
functional property of software systems, and traditional
performance engineering is challenging [91] and error‐prone
[92]. A deeper investment in DL in the style of some code
clone detection or programme repair studies seems prom-
ising in these domains.

� Lack of Generalisability: According to Figure 6, DLmodels
can be used in two phases—in the data preparation and

preprocessing phase for learning the representation of code
(representation learning), and then again in the learning and
validation phase to achieve the SE task. In principle, repre-
sentation learning is independent of the tackled SE task.
Transfer learning [93] could be used to generalise and reuse
pre‐trained models for representation learning to different
tasks. In other application domains of DL (such as computer
vision or NLP), transfer learning has led to generally useful
models such as DenseNET [94] or BERT [95]. We observe a
lack of such models in software engineering. However, we
made the observation in this study that most of the proposed
approaches are highly domain and problem‐dependent. Thus,
very few retrieved studies are applied to different SE tasks.
Very few solutions are transferable or easily adapted to other
SE problems. There are some approaches that explicitly
present generalised SE representations [44, 85]. However,
these approaches are for fixed code units, such as tokens,
statements, or functions. They are not sufficiently flexible to
generate encoding and embeddings for different units. Thus,
the learned code representation may not be effective for a
multitude of tasks. Two studies in our dataset already attempt
to provide such a generalised representation model [4, 10].
We argue that this is an important area of future research that
should be a focal point for future investigations.

� Lack of Industrial Data: Unsurprisingly, the vast majority
of approaches in our dataset are trained and tested on open‐
source projects extracted from platforms, such as GitHub.
However, validation of the resulting models on industrial
data is rare. This is understandable especially in supervised
learning model, which requires annotated datasets of
considerable size. Annotations often need to be manually
labelled by humans according to a specific downstream task.
To address this challenge, and connecting to the previous
point, recent research uses self‐supervised learning [4, 10] to
leverage unlabelled data to pre‐train code representations
which are reusable for building general models that are
suitable for various downstream tasks. While the type of
data that led to this challenge was not an explicit dimension
that we coded for this study, it became abundantly clear
during the review that virtually all analysed studies are based
on open source data, published data sets (which are often
also constructed based on open‐source data), or in some
cases artificial data.

RQ 5 Summary We conclude that the core research gaps
currently prevalent in the literature relate to a lack of
coverage for some relevant SE tasks, a lack of the
application of transfer learning, and a lack of valida-
tion based on industrial data.

10 | DISCUSSION

� Towards AST‐Based Neural Networks: As our work
shows, token‐based approaches are common in software
engineering literature. These approaches tend to either

368 - SAMOAA ET AL.

treat the code as a token sequence or bags of tokens, or
they rely on latent semantic indexing (LSI) and latent
dirichlet allocation (LDA) to represent the code. The
problem of those token‐based approaches is that they treat
the source code as a natural language. To improve these
approaches, code syntax and semantics need to be taken
into account [96]. Some existing work [3, 22, 23] provide
strong evidence that syntactical knowledge contributes
positively and leads to better representations than tradi-
tional token‐based methods. We speculate that this is the
reason why ASTs are used in so many different ap-
proaches. Through the AST, researchers can easily capture
lexical as well as syntactical information. Hence, many
research works try to combine ASTs with deep learning,
which is referred to as AST‐based neural networks. Theses
approaches combine ASTs with Recursive Neural networks
(RvNN) [22], tree‐based CNNs [3], or tree LSTMs [23].

� The Limitations of Tree‐based Approaches: Despite the
effectiveness of such tree‐based neural network approaches
in extracting both lexical and syntactical information, there
are limitations. Similar to long texts in NLP, tree‐based
neural models are vulnerable to the gradient vanishing
problem, where the gradient becomes vanishingly small
during the training (especially when the tree is very large and
deep, which it often is for real‐life source code). Hence,
traversing and encoding the entire AST tree in a bottom up
way [22, 23] or using a sliding window technique [3] may
lose long‐term context information [21]. Another limitation
of AST‐based neural networks is that those approaches
transform the AST or present it as full binary trees to
improve simplicity and efficiency. However, this in turn
destroys the original syntactic structure of the source code
and makes the AST even deeper. Moreover, the transformed
and deeper AST reduces the capability of neural network
models to capture more real and complex semantics [21].
Finally, some SE tasks require not only syntactical, but also
semantic information.

� Towards Graph‐based Code Representation: Due to the
problems of leveraging semantic information with AST‐
based approaches, more and more newer DL papers adopt
graph‐based representations, such as long‐term CFG and
Data Dependencies Graph (DDG). These representation
approaches can overcome some of the limitations of AST‐
based neural networks. Examples of such works are Zhao
et al. [25], who extract semantic features from the CFG of
represented code, Allamanis et al. [33], who consider the
long‐range dependencies induced by the same variable or
function in distant locations, or Tufano et al. [67], who
directly construct CFGs of code fragments.

� The Limitations of Graph‐Based Approaches: However,
graph‐based representation is not with challenges either.
The drawback of CFGs is that they lack data flow infor-
mation. Furthermore, most CFGs only contain control
flows between code blocks and exclude the low‐level syn-
tactic structure within code blocks [59]. Another drawback
of CFGs is that in some programming languages, CFGs are
much harder to obtain than ASTs. Nevertheless, Henkel

et al. [97] show that embeddings learned from (mainly) se-
mantic abstractions provide nearly triple the accuracy of
those learned from (mainly) syntactic abstractions. Ulti-
mately, many solution approaches choose to use a syntactic
representation [75], because it was shown to be useful as a
representation for modelling programming languages in
machine learning models. It was also shown that they are
more expressive than n‐grams and manually designed fea-
tures [44]. Other solutions use approaches based on se-
mantic context [98] in which programme elements are graph
nodes and semantic relations are edges in the graph. Due to
the gap between syntax (e.g., tokens or ASTs) and the se-
mantics of a procedure in a programme, the abstractions of
traces obtained from symbolic execution of a programme
are also used as a representation for learning word embed-
dings [97].

Based on the aforementioned discussion and the ongoing
developments and current promising research directions, we
expect a move towards more graph‐based code representation
as these representation models make it easier to learn semantic
information. However, graph‐based approaches are not
without challenges, and more research in this direction will be
needed.

11 | CONCLUSION

This study has presented a systematic mapping study on 103
primary studies that use code representation in the context of
DL for software engineering. Our mapping study has classified
the software task into four main categories depending on the
input and output of the DL model (code‐code, code‐
prediction, code‐text, and text‐code). Our study showed that
code‐code and code‐prediction are the most addressed soft-
ware tasks. We have also observed that tree‐based and token‐
based approaches are the most common representation ap-
proaches applied in the investigated studies. However, we have
also observed that there is a trend towards hybrid represen-
tations (which combine multiple different representation ap-
proaches) as well as the preferred usage of graph‐based
representations in newer studies. We identify two primary
challenges in current literature: (1) there is a lack of general-
isability of the presented approaches to other tasks (i.e., there
are few attempts at transfer learning between tasks) and (2)
very few studies validate the proposed framework on industrial
datasets. We argue that these two problems constitute severe
threats to the practical usefulness of current code representa-
tion research in the field of software engineering.

ACKNOWLEDGEMENTS
This work has been partially funded by the Swedish Research
Council VR under grant number 2018‐04127 (Developer‐
Targeted Performance Engineering for Immersed Release and
Software Engineers), by the Knowledge Foundation of Sweden
(KKS) through the Synergy Project AIDA—A Holistic AI‐
driven Networking and Processing Framework for Industrial

SAMOAA ET AL. - 369

IoT (Rek:20200067), and by the Swiss National Science
Foundation (SNSF) project “Melise—Machine Learning
Assisted Software Development” (SNSF 204632).

CONFLICT OF INTEREST
The authors declared that they have no conflicts of interest to
this work.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in Zenodo at https://doi.org/10.5281/zenodo.
6466506, reference number 6466506.

ORCID
Hazem Peter Samoaa https://orcid.org/0000-0001-5293-
3388

REFERENCES
1. Bui, N., Jiang, L., Yu, Y.: Cross‐language learning for program classi-

fication using bilateral tree‐based convolutional neural networks. In:
The Workshops of the Thirty‐Second AAAI Conference on Artificial
Intelligence (2018)

2. Kanade, A., et al.: Pre‐trained contextual embedding of source code. In:
ICLR 2020 Conference Program Chairs (2020)

3. Mou, L., et al.: Convolutional neural networks over tree structures for
programming language processing. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI '16, pp. 1287–1293.
AAAI Press (2016)

4. Bui, N.D.Q., Yu, Y., Jiang, L.: Infercode: self‐supervised learning of
code representations by predicting subtrees. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp. 1186–-
1197 (2021)

5. Fang, C., et al.: Functional code clone detection with syntax and se-
mantics fusion learning. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2020, pp. 516–527. Association for Computing Machinery, New York,
NY, USA (2020)

6. Mehrotra, N., et al.: Modeling functional similarity in source code with
graph‐based siamese networks. IEEE Trans. Softw. Eng.(01), 1 (2020).
https://doi.org/10.1109/tse.2021.3105556

7. Hua, J., Wang, H.: On the effectiveness of deep vulnerability detectors to
simple stupid bug detection. In: 2021 IEEE/ACM 18th International
Conference onMining Software Repositories (MSR), pp. 530–534 (2021)

8. Li, Y., Wang, S., Nguyen, T.: Fault localization with code coverage
representation learning. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 661–673 (2021)

9. Shi, K., et al.: Mpt‐embedding: an unsupervised representation
learning of code for software defect prediction. J. Softw.: Evol. Pro-
cess. 33(4), e2330 (2021). e2330 smr.2330. https://doi.org/10.1002/
smr.2330

10. Bui, N.D.Q., Yu, Y., Jiang, L.: Self‐supervised contrastive learning for
code retrieval and summarization via semantic‐preserving trans-
formations. In: SIGIR '21. Association for Computing Machinery, New
York, NY, USA (2021)

11. Liu, S., et al.: Retrieval‐augmented generation for code summarization
via hybrid GNN. In: International Conference on Learning Represen-
tations (2021)

12. Zhang, J., et al.: Retrieval‐based neural source code summarization. In:
2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE), pp. 1385–1397 (2020)

13. Jebnoun, H., et al.: Clones in deep learning code: what, where, and why?
(2021). https://doi.org/10.48550/arXiv.2107.13614

14. Bengio, Y.: Learning deep architectures for AI. Now Publishers Inc.,
Delft (2009)

15. Keller, P., et al.: What you see is what it means! semantic representation
learning of code based on visualization and transfer learning. ACM
Trans. Softw. Eng. Methodol. 31(2), 1–34 (2021). https://doi.org/10.
1145/3485135

16. Dey, T., et al.: Detecting and characterizing bots that commit code. In:
Kim, S., et al. (eds.) MSR '20: 17th International Conference on Mining
Software Repositories, Seoul, Republic of Korea, 29–30 June, 2020,
pp. 209–219. ACM (2020)

17. Zhang, C., et al.: A survey of automatic source code summarization.
Symmetry. 14(3), 471 (2022). https://doi.org/10.3390/sym14030471

18. Teller, V.: Speech and language processing: an introduction to natural
language processing, computational linguistics, and speech recognition.
Comput. Ling. 26(4), 638–641 (2000)

19. Niesler, T., Woodland, P.: A variable‐length category‐based n‐gram
language model. In: 1996 IEEE International Conference on Acous-
tics, Speech, and Signal Processing Conference Proceedings, vol. 1,
pp. 164–167 (1996)

20. Mikolov, T., et al.: Efficient estimation of word representations in
vector space. In: ICLR (Workshop Poster) (2013)

21. Zhang, J., et al.: A novel neural source code representation based on
abstract syntax tree. In: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), pp. 783–794 (2019)

22. White, M., et al.: Deep learning code fragments for code clone detec-
tion. In: 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 87–98 (2016)

23. Wei, H.‐H., Li, M.: Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI'17, pp. 3034–3040. AAAI Press (2017)

24. Cummins, C., et al.: Programl: graph‐based deep learning for program
optimization and analysis. In: arXiv preprint, arXiv:2003.10536 (2020)

25. Zhao, G., Huang, J.: Deepsim: deep learning code functional similarity.
In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 141–151 (2018)

26. Laaber, C., Basmaci, M., Salza, P.: Predicting unstable software bench-
marks using static source code features. Empir. Softw. Eng. 26(5), 114
(2021). https://doi.org/10.1007/s10664‐021‐09996‐y

27. Samoaa, H.P., et al.: A Structured Literature Study of Source Code
Representation for Deep Learning in Software Engineering [Replication
Package]. Zenodo (2021). https://doi.org/10.5281/zenodo.6466506

28. Devlin, J., et al.: Semantic code repair using neuro‐symbolic trans-
formation networks. In: arXiv preprint, arXiv:1710.11054(2017)

29. Malik, R.S., Patra, J., Pradel, M.: Nl2type: inferring javascript function
types from natural language information. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pp. 304–315
(2019)

30. Pradel, M., et al.: Typewriter: neural type prediction with search‐
based validation. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2020, pp.
209–220. Association for Computing Machinery, New York, NY,
USA (2020)

31. Cambronero, J., et al.: When deep learning met code search. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2019, pp. 964–974. Association for
Computing Machinery, New York, NY, USA (2019)

32. Maurel, H., Vidal, S., Rezk, T.: Statically identifying XSS using deep
learning. In: SECRYPT 2021 – 18th International Conference on Se-
curity and Cryptography, Virtual, France, July 2021 (2021)

33. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent
programs with graphs. In: arXiv preprint, arXiv:1711.00740 (2017)

34. Liu, W., et al.: A survey of deep neural network architectures and their
applications. Neurocomputing. 234, 11–26 (2017). https://doi.org/10.
1016/j.neucom.2016.12.038

35. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning‐a new
frontier in artificial intelligence research [research frontier]. IEEE

370 - SAMOAA ET AL.

https://doi.org/10.5281/zenodo.6466506
https://doi.org/10.5281/zenodo.6466506
https://orcid.org/0000-0001-5293-3388
https://orcid.org/0000-0001-5293-3388
https://orcid.org/0000-0001-5293-3388
https://doi.org/10.1109/tse.2021.3105556
https://doi.org/10.1002/smr.2330
https://doi.org/10.1002/smr.2330
https://doi.org/10.48550/arXiv.2107.13614
https://doi.org/10.1145/3485135
https://doi.org/10.1145/3485135
https://doi.org/10.3390/sym14030471
https://doi.org/10.1007/s10664-021-09996-y
https://doi.org/10.5281/zenodo.6466506
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://orcid.org/0000-0001-5293-3388

Comput. Intell. Mag. 5(4), 13–18 (2010). https://doi.org/10.1109/mci.
2010.938364

36. Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and
long short‐term memory (lstm) network. Phys. D: Nonlinear Phenom.
404, 132306 (2020). https://doi.org/10.1016/j.physd.2019.132306

37. Scarselli, F., et al.: The graph neural network model. IEEE Trans.
Neural Network. 20(1), 61–80 (2008). https://doi.org/10.1109/tnn.
2008.2005605

38. Hochreiter, S., Schmidhuber, J.: Long short‐term memory. Neural
Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.
8.1735

39. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural
Information Processing Systems, pp. 5998–6008 (2017)

40. Chakraborty, S., et al.: Codit: code editing with tree‐based neural
models. IEEE Trans. Softw. Eng., 48(4), 1–1399 (2020). https://doi.
org/10.1109/tse.2020.3020502

41. Cao, D., et al.: Ftclnet: convolutional lstm with Fourier transform for
vulnerability detection. In: 2020 IEEE 19th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 539–546 (2020)

42. Li, Y., et al.: Improving bug detection via context‐based code repre-
sentation learning and attention‐based neural networks. Proc. ACM
Program. Lang. 3(OOPSLA), 1–30 (2019). https://doi.org/10.1145/
3360588

43. Ahmad, W.U., et al.: A transformer‐based approach for source code
summarization. In: arXiv preprint, arXiv:2005.00653 (2020)

44. Alon, U., et al.: Code2vec: learning distributed representations of code.
Proc. ACM Program. Lang. 3(POPL), 1–29 (2019). https://doi.org/10.
1145/3290353

45. Shuai, J., et al.: Improving code search with co‐attentive representation
learning. In: Proceedings of the 28th International Conference on
Program Comprehension, ICPC '20, pp. 196–207. Association for
Computing Machinery, New York, NY, USA (2020)

46. Markovtsev, V., et al.: Style‐analyzer: fixing code style inconsistencies
with interpretable unsupervised algorithms. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR),
pp. 468–478 (2019)

47. Csuvik, V., Kicsi, A., Vidács, L.: Source code level word embeddings in
aiding semantic test‐to‐code traceability. In: 2019 IEEE/ACM 10th
International Symposium on Software and Systems Traceability (SST),
pp. 29–36 (2019)

48. Ben‐Nun, T., Jakobovits, A.S., Hoefler, T.: Neural code comprehension:
a learnable representation of code semantics. In: Proceedings of the
32nd International Conference on Neural Information Processing
Systems, NIPS'18, pp. 3589–3601. Curran Associates Inc, Red Hook,
NY, USA (2018)

49. Ramadan, T., et al.: Comparative code structure analysis using deep
learning for performance prediction. In: 2021 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 151–161 (2021)

50. Hadj‐Kacem, M., Bouassida, N.: Deep representation learning for
code smells detection using variational auto‐encoder. In: 2019 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8
(2019)

51. DeFreez, D., Thakur, A.V., Rubio‐González, C.: Path‐based function
embedding and its application to error‐handling specification mining.
In: ESEC/FSE 2018, pp. 423–433. Association for Computing Ma-
chinery, New York, NY, USA (2018)

52. Ampatzoglou, A., et al.: Identifying, categorizing and mitigating
threats to validity in software engineering secondary studies. Inf.
Softw. Technol. 106, 201–230 (2019). https://doi.org/10.1016/j.infsof.
2018.10.006

53. Cheng, D., et al.: Manifesting bugs in machine learning code: an
explorative study with mutation testing. In: 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS),
pp. 313–324. IEEE (2018)

54. Narayanan, A., et al.: graph2vec: Learning distributed representations of
graphs. In: arXiv Preprints, arXiv:1707.05005v1 (2017)

55. Ou, M., et al.: Asymmetric transitivity preserving graph embedding. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '16, pp. 1105–1114.
Association for Computing Machinery, New York, NY, USA (2016)

56. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and
performance: a survey. Knowl. Base Syst. 151, 78–94 (2018). https://
doi.org/10.1016/j.knosys.2018.03.022

57. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD '16, pp.
855–864. Association for Computing Machinery, New York, NY, USA
(2016)

58. Zhang, J., et al.: Retrieval‐based neural source code summarization. In:
Rothermel, G., Bae, D. (eds.) ICSE '20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June – 19 July, 2020,
pp. 1385–1397. ACM (2020)

59. Wang, W., et al.: Detecting code clones with graph neural network and
flow‐augmented abstract syntax tree. In: Kontogiannis, K., et al. (eds.)
27th IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2020, London, ON, Canada, February 18–
21, 2020, pp. 261–271. IEEE (2020)

60. Cvitkovic, M., Singh, B., Anandkumar, A.: Open vocabulary learning on
source code with a graph‐structured cache. In: International Confer-
ence on Machine Learning, pp. 1475–1485. PMLR (2019)

61. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual
prediction with lstm. Neural Comput. 12(10), 2451–2471 (2000).
https://doi.org/10.1162/089976600300015015

62. LeCun, Y., et al.: Gradient‐based learning applied to document recog-
nition. Proc. IEEE. 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

63. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Rep-
resentations by Error Propagation (Technical report). California Univ
San Diego La Jolla Inst for Cognitive Science (1985)

64. Li, Z., et al.: Vuldeepecker: a deep learning‐based system for vulnera-
bility detection. In: Proceedings 2018 Network and Distributed System
Security Symposium (2018)

65. Marastoni, N., Giacobazzi, R., Dalla Preda, M.: A deep learning
approach to program similarity. In: MASES 2018, pp. 26–35. Associa-
tion for Computing Machinery, New York, NY, USA (2018)

66. Wang, Y., Cai, W.‐d., Wei, P.‐c.: A deep learning approach for detecting
malicious javascript code. Secur. Commun. Network. 9(11), 1520–1534
(2016). https://doi.org/10.1002/sec.1441

67. Tufano, M., et al.: Deep learning similarities from different represen-
tations of source code. In: 2018 IEEE/ACM 15th International Con-
ference on Mining Software Repositories (MSR), pp. 542–553 (2018)

68. Fernandes, P., Allamanis, M., Brockschmidt, M.: Structured neural
summarization. In: Conference paper at ICLR (2019)

69. Gupta, R., et al.: Fixing common c language errors by deep learning. In:
Thirty‐First AAAI Conference on Artificial Intelligence (2017)

70. Yasunaga, M., Liang, P.: Graph‐based, self‐supervised program repair
from diagnostic feedback. In: International Conference on Machine
Learning, pp. 10799–10808. PMLR (2020)

71. Fernandes, P., Allamanis, M., Brockschmidt, M.: Structured neural
summarization. In: International Conference on Learning Representa-
tions (2019)

72. Brockschmidt, M., et al.: Generative code modeling with graphs. In:
arXiv Preprint, arXiv:1805.08490 (2018).

73. Büch, L., Andrzejak, A.: Learning‐based recursive aggregation of ab-
stract syntax trees for code clone detection. In: 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 95–104 (2019)

74. Collard, M.L., Decker, M.J., Maletic, J.I.: srcml: An infrastructure for the
exploration, analysis, and manipulation of source code: a tool demon-
stration. In: 2013 IEEE International Conference on Software Main-
tenance, pp. 516–519 (2013)

75. Alon, U., et al.: A general path‐based representation for predicting
program properties. SIGPLAN Not. 53(4), 404–419 (2018). https://
doi.org/10.1145/3296979.3192412

SAMOAA ET AL. - 371

https://doi.org/10.1109/mci.2010.938364
https://doi.org/10.1109/mci.2010.938364
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/tnn.2008.2005605
https://doi.org/10.1109/tnn.2008.2005605
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/tse.2020.3020502
https://doi.org/10.1109/tse.2020.3020502
https://doi.org/10.1145/3360588
https://doi.org/10.1145/3360588
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1016/j.infsof.2018.10.006
https://doi.org/10.1016/j.infsof.2018.10.006
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1002/sec.1441
https://doi.org/10.1145/3296979.3192412
https://doi.org/10.1145/3296979.3192412

76. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong
program analysis & transformation. In: International Symposium on
Code Generation and Optimization, 2004. CGO 2004, pp. 75–86
(2004)

77. Lam, P., et al.: The soot framework for java program analysis: a
retrospective. In: Conference: Cetus Users and Compiler Infrastructure
Workshop (CETUS 2011) (2011)

78. Cytron, R., et al.: Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program Lang. Syst.
13(4), 451–490 (1991). https://doi.org/10.1145/115372.115320

79. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel
programs. SIGPLAN Not. 28(7), 159–168 (1993). https://doi.org/10.
1145/173284.155349

80. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Com-
mun. ACM. 19(3), 137 (1976). https://doi.org/10.1145/360018.360025

81. Vasic, M., et al.: Neural program repair by jointly learning to localize
and repair. In: International Conference on Learning Representations
(2019)

82. Santos, E.A., et al.: Syntax and sensibility: using language models to
detect and correct syntax errors. In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 311–322 (2018)

83. Dinella, E., et al.: Hoppity: learning graph transformations to detect and
fix bugs in programs. In: International Conference on Learning Rep-
resentations (2020)

84. Jia, R., Liang, P.: Adversarial examples for evaluating reading compre-
hension systems. In: arXiv preprint, arXiv:1707.07328 (2017)

85. Alon, U., et al.: code2seq: Generating sequences from structured rep-
resentations of code. In: International Conference on Learning Rep-
resentations (2019)

86. Kang, H.J., Bissyandé, T.F., Lo, D.: Assessing the generalizability of
code2vec token embeddings. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 1–12
(2019)

87. Wei, B., et al.: Code generation as a dual task of code summarization. In:
33rd Conference on Neural Information Processing Systems (NeurIPS)
(2019)

88. Li, Z., et al.: Sysevr: a framework for using deep learning to detect
software vulnerabilities. IEEE Trans. Dependable Secure Comput., 1
(2021). https://doi.org/10.1109/tdsc.2021.3051525

89. Sonnekalb, T.: Machine‐learning supported vulnerability detection in
source code. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pp. 1180–-
1183. Association for Computing Machinery, New York, NY, USA
(2019)

90. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 855–864
(2016)

91. Costa, D., et al.: What's wrong with my benchmark results? Studying
bad practices in jmh benchmarks. IEEE Trans. Softw. Eng. 47(7),
1452–1467 (2021). https://doi.org/10.1109/tse.2019.2925345

92. Laaber, C., Scheuner, J., Leitner, P.: Software microbenchmarking in the
cloud. How bad is it really? Empir. Softw. Eng. 24(4), 2469–2508 (2019).
https://doi.org/10.1007/s10664‐019‐09681‐1

93. Tan, C., et al.: A survey on deep transfer learning. In: Kůrková, V., et al.
(eds.) Artificial Neural Networks and Machine Learning – ICANN
2018, pp. 270–279. Springer International Publishing, Cham (2018)

94. Huang, G., et al.: Densely connected convolutional networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

95. Devlin, J., et al.: Bert: pre‐training of deep bidirectional transformers for
language understanding. In: arXiv preprint, arXiv:1810.04805 (2018)

96. Panichella, A., et al.: How to effectively use topic models for software
engineering tasks? An approach based on genetic algorithms. In: 2013
35th International Conference on Software Engineering (ICSE),
pp. 522–531 (2013)

97. Henkel, J., et al.: Code vectors: understanding programs through
embedded abstracted symbolic traces. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/
FSE 2018, pp. 163–174. Association for Computing Machinery, New
York, NY, USA (2018)

98. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent
programs with graphs. In: International Conference on Learning Rep-
resentations (2018)

99. Chen, Z., et al.: Sequencer: sequence‐to‐sequence learning for end‐to‐
end program repair. IEEE Trans. Softw. Eng. 47(9), 1943–1959
(2021). https://doi.org/10.1109/tse.2019.2940179

100. Cheng, X., et al.: Deepwukong: statically detecting software vulnera-
bilities using deep graph neural network. ACM Trans. Softw. Eng.
Methodol. 30(3), 1–33 (2021). https://doi.org/10.1145/3436877

101. Li, Z., et al.: Vuldeelocator: a deep learning‐based fine‐grained vulner-
ability detector. IEEE Trans. Dependable Secure Comput. (2021)

102. Amodio, M., Chaudhuri, S., Reps, T.W.: Neural attribute machines for
program generation. In: arXiv e‐prints, arXiv:1705.09231 (2017)

103. Haque, S., et al.: Improved automatic summarization of subroutines via
attention to file context. In: Proceedings of the 17th International
Conference on Mining Software Repositories, MSR '20, pp. 300–310.
Association for Computing Machinery, New York, NY, USA (2020)

104. Fujiwara, Y., et al.: Code‐to‐code search based on deep neural network
and code mutation. In: 2019 IEEE 13th International Workshop on
Software Clones (IWSC), pp. 1–7 (2019)

105. Gupta, R., Kanade, A., Shevade, S.: Neural attribution for semantic bug‐
localization in student programs. In: Wallach, H., et al. (eds.) Advances
in Neural Information Processing Systems, vol. 32. Curran Associates,
Inc., New York (2019)

106. Liu, S., et al.: Deepbalance: deep‐learning and fuzzy oversampling for
vulnerability detection. IEEE Trans. Fuzzy Syst. 28(7), 1329–1343
(2020). https://doi.org/10.1109/tfuzz.2019.2958558

107. Nair, A., Roy, A., Funcgnn, K.M.: A graph neural network approach to
program similarity. In: Proceedings of the 14th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment (ESEM), ESEM '20. Association for Computing Machinery, New
York, NY, USA (2020)

108. Sheneamer, A., Kalita, J.: Semantic clone detection using machine
learning. In: 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 1024–1028 (2016)

109. Svyatkovskiy, A., et al.: Fast and memory‐efficient neural code
completion. In: 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 329–340 (2021)

110. Liu, K., et al.: Learning to spot and refactor inconsistent method names.
In: 2019 IEEE/ACM 41st International Conference on Software En-
gineering (ICSE), pp. 1–12 (2019)

111. Shi, K., et al.: Pathpair2vec: an ast path pair‐based code representation
method for defect prediction. J. Comput. Lang. 59, 100979 (2020).
https://doi.org/10.1016/j.cola.2020.100979

112. Li, J., et al.: Software defect prediction via convolutional neural network.
In: 2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 318–328 (2017)

113. Perez, D., Chiba, S.: Cross‐language clone detection by learning over
abstract syntax trees. In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR), pp. 518–528 (2019)

114. Li, L., et al.: A deep learning‐based clone detection approach. In: 2017
IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME), pp. 249–260 (2017)

115. Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE),
pp. 933–944 (2018)

116. Hu, X., et al.: Deep code comment generation. In: 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC),
pp. 200–20010 (2018)

117. Sun, Z., et al.: A grammar‐based structural cnn decoder for code gen-
eration. Proc. AAAI Conf. Artif. Intell. 33, 7055–7062 (2019). https://
doi.org/10.1609/aaai.v33i01.33017055

372 - SAMOAA ET AL.

https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/173284.155349
https://doi.org/10.1145/173284.155349
https://doi.org/10.1145/360018.360025
https://doi.org/10.1109/tdsc.2021.3051525
https://doi.org/10.1109/tse.2019.2925345
https://doi.org/10.1007/s10664-019-09681-1
https://doi.org/10.1109/tse.2019.2940179
https://doi.org/10.1145/3436877
https://doi.org/10.1109/tfuzz.2019.2958558
https://doi.org/10.1016/j.cola.2020.100979
https://doi.org/10.1609/aaai.v33i01.33017055
https://doi.org/10.1609/aaai.v33i01.33017055

118. Wang, R., et al.: Fret: functional reinforced transformer with bert for
code summarization. IEEE Access. 8, 135591–135604 (2020). https://
doi.org/10.1109/access.2020.3011744

119. Murali, V., et al.: Neural sketch learning for conditional program gen-
eration. In: International Conference on Learning Representations
(2018)

120. Svyatkovskiy, A., et al.: Pythia: AI‐assisted code completion system. In:
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery; Data Mining, KDD '19, pp. 2727–2735. Asso-
ciation for Computing Machinery, New York, NY, USA (2019)

121. Wang, W., et al.: Detecting code clones with graph neural network and
flow‐augmented abstract syntax tree. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 261–271 (2020)

122. Wu, H., Zhao, H., Zhang, H.: Code summarization with structure‐
induced transformer. In: Association for Computational Linguistics:
ACL‐IJCNLP 2021 (2021)

123. Li, J., et al.: Code completion with neural attention and pointer net-
works. In: Proceedings of the Twenty‐Seventh International Joint
Conference on Artificial Intelligence (2018)

124. Pradel, M., Sen, K.: Deep learning to find bugs. TU Darmstadt,
Department of Computer Science. 4, 1 (2017)

125. Lin, G., et al.: Deep learning‐based vulnerable function detection: a
benchmark. In: Zhou, J., et al. (eds.) Information and Communications
Security, pp. 219–232. Springer International Publishing, Cham (2020)

126. Iyer, S., et al.: Summarizing source code using a neural attention model.
In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2073–2083
(2016)

127. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical
language models. SIGPLAN Not. 49(6), 419–428 (2014). https://doi.
org/10.1145/2666356.2594321

128. Xie, C., et al.: A source code similarity based on siamese neural
network. Appl. Sci. 10(21), 7519 (2020). https://doi.org/10.3390/
app10217519

129. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for
defect prediction. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 297–308 (2016)

130. Tufano, M., et al.: An empirical study on learning bug‐fixing patches in
the wild via neural machine translation. ACM Trans. Softw. Eng.
Methodol. 28(4), 1–29 (2019). https://doi.org/10.1145/3340544

131. Dam, H.K., Tran, T., Pham, T.: A deep language model for software
code. In: arXiv preprint, arXiv:1608.02715 (2016)

132. Pradel, M., Sen, K.: Deepbugs: a learning approach to name‐based bug
detection. Proc. ACM Program. Lang. 2(OOPSLA), 1–25 (2018).
https://doi.org/10.1145/3276517

133. Russell, R., et al.: Automated vulnerability detection in source code
using deep representation learning. In: 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA),
pp. 757–762 (2018)

134. Wang, K., Su, Z.: Learning blended, precise semantic program em-
beddings. Proc. ACM Program. Lang. 1, 1–25 (2019)

135. White, M., et al.: Sorting and transforming program repair ingredients
via deep learning code similarities. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 479–490 (2019)

136. Yu, H., et al.: Neural detection of semantic code clones via tree‐based
convolution. In: 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC), pp. 70–80 (2019)

137. Yin, P., Neubig, G.: A syntactic neural model for general‐purpose code
generation. In: Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (2017)

138. Zeng, J., et al.: Fast code clone detection based on weighted recursive
autoencoders. IEEE Access. 7, 125062–125078 (2019). https://doi.
org/10.1109/access.2019.2938825

139. White, M., et al.: Toward deep learning software repositories. In: 2015
IEEE/ACM 12th Working Conference on Mining Software Re-
positories, pp. 334–345 (2015)

140. Mou, L., et al.: Tbcnn: a tree‐based convolutional neural network for
programming language processing. In: arXiv preprint, arXiv:1409.5718
(2014)

141. Zhou, M., et al.: Deeptle: learning code‐level features to predict code
performance before it runs. In: 2019 26th Asia‐Pacific Software Engi-
neering Conference (APSEC), pp. 252–259 (2019)

142. Allamanis,M., Peng,H., Sutton, C.: A convolutional attention network for
extreme summarization of source code. In: Balcan, M.F., Weinberger, K.
Q. (eds.) Proceedings of the 33rd International Conference on Machine
Learning, Volume 48 of Proceedings of Machine Learning Research, 20–
22 Jun 2016, pp. 2091–2100. PMLR, New York, New York, USA (2016)

143. Wan, Y., et al.: Improving automatic source code summarization via
deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, pp. 397–407. Association for Computing Machinery, New York,
NY, USA (2018)

144. Zhou, Y., et al.: Devign: effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. In:
NeurIPS (2019)

How to cite this article: Samoaa, H.P., et al.: A
systematic mapping study of source code representation
for deep learning in software engineering. IET Soft.
16(4), 351–385 (2022). https://doi.org/10.1049/sfw2.
12064

A P P END I CE S

Analysis of the main attributes

Authors Title Venue Year Cit. Key

U. Alon, M. Zilberstein, O. Levy, and A. Yahav code2vec: learning distributed representations of code POPL 2019 [44]

U. Alon, S. Brody, O. Levy, E. Yahav code2seq: Generating Sequences from Structured
Representations of Code

ICLR 2019 [85]

M. Brockschmidt, M. Allamanis, A.L. Gaunt, O.
Polozov

Generative Code Modelling with Graphs ICLR 2019 [72]

W. U. Ahmad, S. Chakraborty, B. Ray, K. Chang A Transformer‐based Approach for Source Code
Summarization

ACL 2020 [43]

Nghi D. Q. Bui, Lingxiao Jiang, Yijun Yu Cross‐Language Learning for Program Classification using
Bilateral Tree‐Based Convolutional Neural Networks

AAAI 2017 [1]

(Continues)

SAMOAA ET AL. - 373

https://doi.org/10.1109/access.2020.3011744
https://doi.org/10.1109/access.2020.3011744
https://doi.org/10.1145/2666356.2594321
https://doi.org/10.1145/2666356.2594321
https://doi.org/10.3390/app10217519
https://doi.org/10.3390/app10217519
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3276517
https://doi.org/10.1109/access.2019.2938825
https://doi.org/10.1109/access.2019.2938825
https://doi.org/10.1049/sfw2.12064
https://doi.org/10.1049/sfw2.12064

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

Nghi D. Q. Bui, Yijun Yu, Lingxiao Jiang Self‐Supervised Contrastive Learning for Code Retrieval and
Summarization via Semantic‐Preserving Transformations

SIGIR 2021 [10]

J. Devlin, J. Uesato, R. Singh, P. Kohli Semantic Code Repair using Neuro‐Symbolic Transformation
Networks

arXiv 2017 [28]

M. Allamanis, M. Brockschmidt, M. Khademi Learning to Represent Programs with Graphs ICLR 2018 [33]

L. Büch, A. Andrzejak Learning‐Based Recursive Aggregation of Abstract Syntax
Trees for Code Clone Detection

SANER 2019 [73]

R. Gupta, S. Pal, A. Kanade, S. Shevade DeepFix: Fixing Common C Language Errors by Deep
Learning

AAAI 2017 [69]

J. Cambronero, H. Li, S. Kim, K. Sen, S. Chandra When Deep Learning Met Code Search FSE 2019 [31]

S. Chakraborty, Y. Ding, M. Allamanis, B. Ray CODIT: Code Editing with Tree‐Based Neural Models TSE 2019 [40]

D. Cao, J. Huang, X. Zhang, X. Liu FTCLNet: Convolutional LSTM with Fourier Transform for
Vulnerability Detection

TrustCom 2020 [41]

Nghi D. Q. Bui, Y. Yu, L. Jiang InferCode: Self‐Supervised Learning of Code Representations
by Predicting Subtrees

ICSE 2021 [4]

Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D.
Poshyvanyk, M. Monperrus

SEQUENCER: Sequence‐to‐Sequence Learning for End‐to‐
End Program Repair

TSE 2021 [99]

X. Cheng, H. Wang, J. Hua, G. Xu, Y. Sui DeepWukong: Statically Detecting Software Vulnerabilities
Using Deep Graph Neural Network

TOSEM 2021 [100]

J. Hua, H. Wang On the Effectiveness of Deep Vulnerability Detectors to
Simple Stupid Bug Detection

MSR 2021 [7]

U. Alon, M. Zilberstein, O. Levy, E. Yahav A general path‐based representation for predicting program
properties

SIGPLAN 2018 [75]

T. Ben‐Nun, A. S. Jakobovits, T. Hoefler Neural Code Comprehension: A Learnable Representation of
Code Semantics

NeurIPS 2018 [48]

V. Csuvik, A. Kicsi, L. Vidács Source Code Level Word Embeddings in Aiding Semantic
Test‐to‐Code Traceability

ICSE 2019 [47]

M. Cvitkovic, B. Singh, A. Anandkumar Open Vocabulary Learning on Source Code with a Graph‐
Structured Cache

ICML 2019 [60]

Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, H. Jin VulDeeLocator: A Deep Learning‐based Fine‐grained
Vulnerability Detector

TDSC 2021 [101]

Y. Li, S. Wang, T. N. Nguyen Fault Localization with Code Coverage Representation
Learning

ICSE 2021 [8]

S. Liu, Y. Chen, X. Xie, J. K. Siow, Y. Liu Retrieval‐Augmented Generation for Code Summarization via
Hybrid GNN

ICLR 2021 [11]

H. Maurel, S. Vidal, T. Rezk Statically Identifying XSS using Deep Learning SECRYPT 2021 [32]

C. Cummins, Z. V. Fisches, T. Ben‐Nun, T. Hoefler,
H. Leather

PROGRAML: Graph‐based Deep Learning for Program
Optimization and Analysis

PMLR 2021 [24]

P. Fernandes, M. Allamanis, M. Brockschmidt Structured Neural Summarization ICLR 2019 [71]

M. Amodio, S. Chaudhuri, T. Reps Neural Attribute Machines for Program Generation arXiv 2021 [102]

E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, K. Wang Hoppity: Learning graph transformations to detect and fix
bugs in programs

ICLR 2020 [83]

C. Fang, Z. Liu, Y. Shi, J. Huang, Q. Shi Functional Code Clone Detection with Syntax and Semantics
Fusion Learning

ISSTA 2020 [5]

S. Haque, A. LeClair, L. Wu, C. McMillan Improved Automatic Summarization of Subroutines via
Attention to File Context

MSR 2020 [103]

Y. Fujiwara, N. Yoshida, E. Choi, K. Inoue Code‐to‐Code Search Based on Deep Neural Network and
Code Mutation

IWSC 2019 [104]

374 - SAMOAA ET AL.

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

T. Ramadan, T.Z. Islam, C. Phelps Comparative Code Structure Analysis using Deep Learning for
Performance Prediction

ISPASS 2021 [49]

A. Kanade, P. Maniatis, G. Balakrishnan, K. Shi Pre‐trained Contextual Embedding of Source Code ICLR 2020 [2]

D. DeFreez, A.V. Thakur, C. Rubio‐González Path‐based function embedding and its application to error‐
handling specification mining

FSE 2018 [51]

R. Gupta, A. Kanade, S. Shevade Neural Attribution for Semantic Bug‐Localization in Student
Programs

NeurIPS 2019 [105]

M. Hadj‐Kacem, N. Bouassida Deep Representation Learning for Code Smells Detection
using Variational Auto‐Encoder

IJCNN 2019 [50]

S. Liu, G. Lin, Q.L. Han, S. Wen, J. Zhang, Y. Xiang DeepBalance: Deep‐Learning and Fuzzy Oversampling for
Vulnerability Detection

Transactions on
Fuzzy Systems

2020 [106]

N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo,
R. Purandare

Modelling Functional Similarity in Source Code with Graph‐
Based Siamese Networks

TSE 2020 [6]

K. Shi, Y. Lu, G. Liu, Z. Wei, J. Chang MPT‐embedding: An unsupervised representation learning of
code for software defect prediction

SEP 2021 [9]

A. Nair, A. Roy, K. Meinke funcGNN: A Graph Neural Network Approach to Program
Similarity

ESEM 2020 [107]

A. Sheneamer, J. Kalita Semantic Clone Detection Using Machine Learning ICMLA 2016 [108]

H.J. Kang, T.F. Bissyandé, D. Lo Assessing the Generalizability of code2vec Token Embeddings ASE 2019 [86]

M. Pradel, G. Gousios, J. Liu, S. Chandra TypeWriter: Neural‐Type Prediction with Search‐Based
Validation

FSE 2020 [30]

Y. Li, S. Wang, T.N. Nguyen, S. Van Nguyen Improving Bug Detection via Context‐Based Code
Representation Learning and Attention‐Based Neural
Networks

OOPSLA 2019 [42]

A. Svyatkovskiy, S. Lee, A. Hadjitofi Fast and Memory‐Efficient Neural Code Completion MSR 2021 [109]

K. Liu, D. Kim, T.F. Bissyandé, T. Kim Learning to Spot and Refactor Inconsistent Method Names ICSE 2019 [110]

R.S. Malik, J. Patra, M. Pradel NL2Type: Inferring JavaScript Function Types from Natural
Language Information

ICSE 2019 [29]

K. Shi, Y. Lu, J. Chang, Z. Wei PathPair2Vec: An AST path pair‐based code representation
method for defect prediction

JCL 2020 [111]

V. Markovtsev, W. Long, H. Mougard STYLE‐ANALYZER: fixing code style inconsistencies with
interpretable unsupervised algorithms

MSR 2019 [46]

J. Li, P. He, J. Zhu, M.R. Lyu Software Defect Prediction via Convolutional Neural Network QRS 2017 [112]

D. Perez, S. Chiba Cross‐language clone detection by learning over abstract
syntax trees

MSR 2019 [113]

L. Li, H. Feng, W. Zhuang, N. Meng CCLearner: A Deep Learning‐Based Clone Detection
Approach

ICSME 2017 [114]

T. Sonnekalb Machine‐Learning Supported Vulnerability Detection in
Source Code

FSE 2019 [89]

X. Gu, H. Zhang, S. Kim Deep Code Search ICSE 2018 [115]

J. Henkel, S.K. Lahiri, B. Liblit, T. Reps Code Vectors: Understanding Programs Through Embedded
Abstracted Symbolic Traces

FSE 2018 [97]

X. Hu, G. Li, X. Xia, D. Lo, Z. Jin Deep Code Comment Generation ICPC 2018 [116]

Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li A Grammar‐Based Structural CNN Decoder for Code
Generation

AAAI 2019 [117]

J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, Y. Lei Improving Code Search with Co‐Attentive Representation
Learning

ICPC 2020 [45]

(Continues)

SAMOAA ET AL. - 375

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

R. Wang, H. Zhang, G. Lu, L. Lyu, C. Lyu Fret: Functional Reinforced Transformer With BERT for
Code Summarization

IEEE Access 2020 [118]

V. Murali, L. Qi, S. Chaudhuri, C. Jermaine Neural Sketch Learning for Conditional Program Generation ICLR 2017 [119]

A. Svyatkovskiy, Y. Zhao, S. Fu Pythia: AI‐assisted Code Completion System SIGKDD 2019 [120]

W. Wang, G. Li, B. Ma, X. Xia, Z. Jin Detecting Code Clones with Graph Neural Network and
Flow‐Augmented Abstract Syntax Tree

SANER 2020 [121]

H. Wu, H. Zhao, M. Zhang SIT3: Code Summarization with Structure‐Induced
Transformer

ACL 2021 [122]

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng VulDeePecker: A Deep Learning‐Based System for
Vulnerability Detection

NDSS 2018 [64]

J. Li, Y. Wang, M.R. Lyu, I. King Code Completion with Neural Attention and Pointer
Networks

JICAI 2018 [123]

M. Pradel, K. Sen Deep Learning to Find Bugs arXiv 2017 [124]

M. White, M. Tufano, C. Vendome Deep Learning Code Fragments for Code Clone Detection ASE 2016 [22]

L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin Convolutional Neural Networks over Tree Structures for
Programming Language Processing

AAAI 2016 [3]

G. Lin, W. Xiao, J. Zhang, Y. Xiang Deep Learning‐Based Vulnerable Function Detection ICICS 2020 [125]

S. Iyer, I. Konstas, A. Cheung, L. Zettlemoyer Summarizing Source Code using a Neural Attention Model ACL 2016 [126]

H. Wei, M. Li Supervised Deep Features for Software Functional Clone
Detection by Exploiting Lexical and Syntactical
Information in Source Code

AAAI 2017 [23]

V. Raychev, M. Vechev, E. Yahav Code completion with statistical language models SIGPLAN 2014 [127]

N. Marastoni, R. Giacobazzi, M. Dalla Preda A Deep Learning Approach to Program Similarity MASES 2018 [65]

C. Xie, X. Wang, C. Qian, M. Wang A Source Code Similarity Based on Siamese Neural Network Applied Science 2020 [128].

Y. Wang, W. Cai, P. Wei A deep learning approach for detecting malicious JavaScript
code

SCN 2016 [66]

S. Wang, T. Liu, L. Tan Automatically Learning Semantic Features for Defect
Prediction

2016 ICSE [129]

M. Yasunaga, P. Liang Graph‐based, Self‐Supervised Program Repair from
Diagnostic Feedback

ICML 2020 [70]

M. Tufano, C. Watson, G. Bavota, M.D. Penta An Empirical Study on Learning Bug‐Fixing Patches in the
Wild via Neural Machine Translation

TOSEM 2019 [130]

H. Wei, M. Li Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information
in source code

JICAI 2017 [23]

H.K. Dam, T. Tran, T. Pham A deep language model for software code arXiv 2016 [131]

M. Vasic, A. Kanade, P. Maniatis, D. Bieber Neural program repair by jointly learning to localize and repair ICLR 2018 [81]

M. Pradel, K. Sen DeepBugs: A Learning Approach to Name‐Based Bug
Detection

OOPSLA 2018 [132]

R. Russell, L. Kim, L. Hamilton, T. Lazovich Automated Vulnerability Detection in Source Code Using
Deep Representation Learning

ICMLA 2018 [133]

K. Wang, Z. Su Learning Blended, Precise Semantic Program Embeddings PLDI 2020 [134]

E.A. Santos, J.C. Campbell, D. Patel Syntax and Sensibility: Using Language Models to Detect and
Correct Syntax Errors

SANER 2018 [82]

B. Wei, G. Li, X. Xia, Z. Fu, Z. Jin Code Generation as a Dual Task of Code Summarization NeurIPS 2019 [87]

M. White, M. Tufano, M. Martinez Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities

SANER 2019 [135]

376 - SAMOAA ET AL.

A P P END I X (Continued)

Authors Title Venue Year Cit. Key

H. Yu, W. Lam, L. Chen, G. Li, T. Xie Neural Detection of Semantic Code Clones Via Tree‐Based
Convolution

ICPC 2019 [136]

P. Yin, G. Neubig A Syntactic Neural Model for General‐Purpose Code
Generation

ACL 2017 [137]

J. Zeng, K. Ben, X. Li, X. Zhang Fast Code Clone Detection Based on Weighted Recursive
Autoencoders

IEEE Access 2019 [138]

M. White, C. Vendome Toward deep learning software repositories MSR 2015 [139]

J. Zhang, X. Wang, H. Zhang, H. Sun A Novel Neural Source Code Representation Based on
Abstract Syntax Tree

ICSE 2019 [21]

M. Tufano, C. Watson, G. Bavota Deep Learning Similarities from Different Representations of
Source Code

MSR 2018 [67]

J. Zhang, X. Wang, H. Zhang, H. Sun Retrieval‐based Neural Source Code Summarization ICSE 2020 [58]

L. Mou, G. Li, Z. Jin, L. Zhang, T. Wang TBCNN: A tree‐based convolutional neural network for
programming language processing

arXiv 2014 [140]

L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin Convolutional Neural Networks over Tree Structures for
Programming Language Processing

AAAI 2016 [3]

M. Zhou, J. Chen, H. Hu, J. Yu, Z. Li DeepTLE: Learning Code‐Level Features to Predict Code
Performance before It Runs

APSEC 2019 [141]

M. Allamanis, H. Peng, C. Sutton A Convolutional Attention Network for Extreme
Summarization of Source Code

ICML 2016 [142]

G. Zhao, J. Huang DeepSim: deep learning code functional similarity FSE 2018 [25]

Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu Improving Automatic Source Code Summarization via Deep
Reinforcement Learning

ASE 2018 [143]

Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural
Networks

NeurIPS 2019 [144]

B List of Venue Acronyms

Acronyms Venue

AAAI Association for the Advancement of Artificial Intelligence

ACL Association for Computational Linguistics

ASE International Conference on Automated Software Engineering

FSE Fast Software Encryption

ICLR International Conference on Learning Representations

ICML International Conference on Machine Learning

ICMLA International Conference on Machine Learning and Applications

ICPC International Conference on Program Comprehension

ICSE International Conference on Software Engineering

IJCAI International Joint Conference on Artificial Intelligence

MSR Mining Software Repositories

NeurIPS Neural Information Processing Systems

PACMPL Proceedings of the ACM on Programming Languages

PLDI Programming Language Design and Implementation

SANER International Conference on Software Analysis, Evolution and Reengineering

SAMOAA ET AL. - 377

C SE Tasks and Related Papers
C.1 Main SE Tasks and Related Papers

Title Code‐code Code‐text Text‐code Code‐prediction

code2vec: Learning Distributed Representations of Code ✓

code2seq: Generating Sequences from Structured Representations of Code ✓

Generative Code Modelling with Graphs ✓

A Transformer‐based Approach for Source Code Summarization ✓

Cross‐Language Learning for Program Classification using Bilateral Tree‐Based Convolutional
Neural Networks

✓

Self‐Supervised Contrastive Learning for Code Retrieval and Summarization via Semantic‐
Preserving Transformations

✓ ✓ ✓

Semantic Code Repair using Neuro‐Symbolic Transformation Networks ✓

Learning to Represent Programs with Graphs ✓

Learning‐Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection ✓

DeepFix: Fixing Common C Language Errors by Deep Learning ✓

When Deep Learning Met Code Search ✓

CODIT: Code Editing with Tree‐Based Neural Models ✓

FTCLNet: Convolutional LSTM with Fourier Transform for Vulnerability Detection ✓

InferCode: Self‐Supervised Learning of Code Representations by Predicting Subtrees ✓

SEQUENCER: Sequence‐to‐Sequence Learning for End‐to‐End Program Repair ✓

DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network ✓

On the Effectiveness of Deep Vulnerability Detectors to Simple Stupid Bug Detection ✓

A general path‐based representation for predicting program properties ✓

Neural Code Comprehension: A Learnable Representation of Code Semantics ✓

Source Code Level Word Embeddings in Aiding Semantic Test‐to‐Code Traceability ✓

Open Vocabulary Learning on Source Code with a Graph‐Structured Cache ✓ ✓

VulDeeLocator: A Deep Learning‐based Fine‐grained Vulnerability Detector ✓

Fault Localization with Code Coverage Representation Learning ✓

SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities ✓

Retrieval‐Augmented Generation for Code Summarization via Hybrid GNN ✓

Statically Identifying XSS using Deep Learning ✓

PROGRAML: GRAPH‐BASED DEEP LEARNING FOR PROGRAM OPTIMIZATION
AND ANALYSIS

✓

STRUCTURED NEURAL SUMMARIZATION ✓

Neural Attribute Machines for Program Generation ✓

Hoppity: Learning graph transformations to detect and fix bugs in programs. ✓ ✓

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ✓

Improved Automatic Summarization of Subroutines via Attention to File Context ✓

Code‐to‐Code Search Based on Deep Neural Network and Code Mutation ✓

Comparative Code Structure Analysis using Deep Learning for Performance Prediction ✓

PRE‐TRAINED CONTEXTUAL EMBEDDING OF SOURCE CODE ✓

Path‐based function embedding and its application to error‐handling specification mining ✓

Neural Attribution for Semantic Bug‐Localization in Student Programs ✓

378 - SAMOAA ET AL.

A P P END I X (Continued)

Title Code‐code Code‐text Text‐code Code‐prediction

Deep Representation Learning for Code Smells Detection using Variational Auto‐Encoder ✓

DeepBalance: Deep‐Learning and Fuzzy Oversampling for Vulnerability Detection ✓

Modelling Functional Similarity in Source Code with Graph‐Based Siamese Networks ✓

MPT‐embedding: An unsupervised representation learning of code for software defect
prediction

✓

funcGNN: A Graph Neural Network Approach to Program Similarity ✓

Semantic Clone Detection Using Machine Learning ✓

Assessing the Generalizability of code2vec Token Embeddings ✓ ✓

TypeWriter: Neural Type Prediction with Search‐Based Validation ✓

Improving Bug Detection via Context‐Based Code Representation Learning and Attention‐
Based Neural Networks

✓

Fast and Memory‐Efficient Neural Code Completion ✓

Learning to Spot and Refactor Inconsistent Method Names ✓

NL2Type: Inferring JavaScript Function Types from Natural Language Information ✓

PathPair2Vec: An AST path pair‐based code representation method for defect prediction ✓

STYLE‐ANALYZER: fixing code style inconsistencies with interpretable unsupervised
algorithms

✓

Software Defect Prediction via Convolutional Neural Network ✓

Cross‐language clone detection by learning over abstract syntax trees ✓

CCLearner: A Deep Learning‐Based Clone Detection Approach ✓

Machine‐Learning Supported Vulnerability Detection in Source Code ✓

Deep Code Search ✓

Code Vectors: Understanding Programs Through Embedded Abstracted Symbolic Traces ✓

Deep Code Comment Generation ✓

A Grammar‐Based Structural CNN Decoder for Code Generation ✓

Improving Code Search with Co‐Attentive Representation Learning ✓

Fret: Functional Reinforced Transformer With BERT for Code Summarization ✓

Neural Sketch Learning for Conditional Program Generation ✓

Pythia: AI‐assisted Code Completion System ✓

Detecting Code Clones with Graph Neural Network and Flow‐Augmented Abstract Syntax Tree ✓

SIT3: Code Summarization with Structure‐Induced Transformer ✓

VulDeePecker: A Deep Learning‐Based System for Vulnerability Detection ✓

Code Completion with Neural Attention and Pointer Networks ✓

Deep Learning to Find Bugs (With focus on name‐based bug detectors) ✓

Deep Learning Code Fragments for Code Clone Detection ✓

Convolutional Neural Networks over Tree Structures for Programming Language Processing ✓

Deep Learning‐Based Vulnerable Function Detection: A Benchmark ✓

Summarizing Source Code using a Neural Attention Model ✓

Supervised Deep Features for Software Functional Clone Detection by Exploiting Lexical and
Syntactical Information in Source Code

✓

Code completion with statistical language models ✓

(Continues)

SAMOAA ET AL. - 379

A P P END I X (Continued)

Title Code‐code Code‐text Text‐code Code‐prediction

A Deep Learning Approach to Program Similarity ✓

A Source Code Similarity Based on Siamese Neural Network ✓

A deep learning approach for detecting malicious JavaScript code ✓

Automatically Learning Semantic Features for Defect Prediction ✓

Graph‐based, Self‐Supervised Program Repair from Diagnostic Feedback ✓

An Empirical Study on Learning Bug‐Fixing Patches in the Wild via Neural Machine Translation ✓

Supervised deep features for software functional clone detection by exploiting lexical and
syntactical information in source code

✓

A deep language model for software code ✓

Neural program repair by jointly learning to localize and repair ✓ ✓

DeepBugs: A Learning Approach to Name‐Based Bug Detection ✓

Automated Vulnerability Detection in Source Code Using Deep Representation Learning ✓

Blended, precise semantic program embeddings ✓

Syntax and Sensibility: Using Language Models to Detect and Correct Syntax Errors ✓ ✓

Code Generation as a Dual Task of Code Summarization ✓ ✓

Sorting and Transforming Program Repair Ingredients via Deep Learning Code Similarities ✓

Neural Detection of Semantic Code Clones Via Tree‐Based Convolution ✓

A Syntactic Neural Model for General‐Purpose Code Generation ✓

Fast Code Clone Detection Based on Weighted Recursive Autoencoders ✓

Toward deep learning software repositories ✓

A Novel Neural Source Code Representation Based on Abstract Syntax Tree ✓ ✓

Deep Learning Similarities from Different Representations of Source Code ✓

Retrieval‐based Neural Source Code Summarization ✓

TBCNN: A tree‐based convolutional neural network for programming language processing ✓

Convolutional Neural Networks over Tree Structures for Programming Language Processing ✓

DeepTLE: Learning Code‐Level Features to Predict Code Performance before It Runs

A Convolutional Attention Network for Extreme Summarization of Source Code ✓

DeepSim: deep learning code functional similarity ✓

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ✓

Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics
via Graph Neural Networks

✓

C.2 Code–Code Tasks and Related Papers

Title
Code clone
detection Traceability

Code
similarity
detection

Program
repair

Fixing
format

Code
completion

Compiler
analysis

Program
generation

Generative Code Modelling with Graphs ✓

Self‐Supervised Contrastive Learning for Code
Retrieval and Summarization via Semantic‐
Preserving Transformations

✓

380 - SAMOAA ET AL.

A P P END I X (Continued)

Title
Code clone
detection Traceability

Code
similarity
detection

Program
repair

Fixing
format

Code
completion

Compiler
analysis

Program
generation

Learning‐Based Recursive Aggregation of Abstract
Syntax Trees for Code Clone Detection

✓

DeepFix: Fixing Common C Language Errors by
Deep Learning

✓

CODIT: Code Editing with Tree‐Based Neural
Models

✓ ✓

InferCode: Self‐Supervised Learning of Code
Representations by Predicting Subtrees

✓ ✓

SEQUENCER: Sequence‐to‐Sequence Learning
for End‐to‐End Program Repair

✓

Source Code Level Word Embeddings in Aiding
Semantic Test‐to‐Code Traceability

✓

Open Vocabulary Learning on Source Code with a
Graph‐Structured Cache

✓

PROGRAML: GRAPH‐BASED DEEP
LEARNING FOR PROGRAM
OPTIMIZATION AND ANALYSIS

✓

Neural Attribute Machines for Program Generation ✓

Hoppity: Learning graph transformations to detect
and fix bugs in programs.

✓

Functional Code Clone Detection with Syntax and
Semantics Fusion Learning

✓

Modelling Functional Similarity in Source Code
with Graph‐Based Siamese Networks

✓

funcGNN: A Graph Neural Network Approach to
Program Similarity

✓

Semantic Clone Detection Using Machine Learning ✓

Assessing the Generalizability of code2vec Token
Embeddings

✓

Fast and Memory‐Efficient Neural Code
Completion

✓

STYLE‐ANALYZER: fixing code style
inconsistencies with interpretable unsupervised
algorithms

✓

Cross‐language clone detection by learning over
abstract syntax trees

✓

CCLearner: A Deep Learning‐Based Clone
Detection Approach

✓

Code Vectors: Understanding Programs Through
Embedded Abstracted Symbolic Traces

✓

A Grammar‐Based Structural CNN Decoder for
Code Generation

✓

Neural Sketch Learning for Conditional Program
Generation

✓

Pythia: AI‐assisted Code Completion System ✓

Detecting Code Clones with Graph Neural
Network and Flow‐Augmented Abstract Syntax
Tree

✓

(Continues)

SAMOAA ET AL. - 381

A P P END I X (Continued)

Title
Code clone
detection Traceability

Code
similarity
detection

Program
repair

Fixing
format

Code
completion

Compiler
analysis

Program
generation

Code Completion with Neural Attention and
Pointer Networks

✓

Deep Learning Code Fragments for Code Clone
Detection

✓

Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and
Syntactical Information in Source Code

✓

Code completion with statistical language models ✓

A Deep Learning Approach to Program Similarity ✓

A Source Code Similarity Based on Siamese Neural
Network

✓

Graph‐based, Self‐Supervised Program Repair
from Diagnostic Feedback

✓

An Empirical Study on Learning Bug‐Fixing
Patches in the Wild via Neural Machine
Translation

✓

Supervised deep features for software functional
clone detection by exploiting lexical and
syntactical information in source code

✓

A deep language model for software code ✓

Neural program repair by jointly learning to localize
and repair

✓

Syntax and Sensibility: Using Language Models to
Detect and Correct Syntax Errors

✓

Sorting and Transforming Program Repair
Ingredients via Deep Learning Code
Similarities

✓

Neural Detection of Semantic Code Clones Via
Tree‐Based Convolution

✓

A Syntactic Neural Model for General‐Purpose
Code Generation

✓

Fast Code Clone Detection Based on Weighted
Recursive Autoencoders

✓ ✓

Toward deep learning software repositories ✓

A Novel Neural Source Code Representation Based
on Abstract Syntax Tree

✓

Deep Learning Similarities from Different
Representations of Source Code

✓ ✓

DeepSim: deep learning code functional similarity ✓

C.3 Code Prediction Tasks and Related Papers

Title
Source code
classification

Code
smell
detection

Error
handling

Bug
detection

Malicious
behaviour
detection

Vulnerability
detection

Performance
prediction

Type
signature
prediction

Cross‐Language Learning for Program
Classification using Bilateral Tree‐
Based Convolutional Neural Networks

✓

382 - SAMOAA ET AL.

A P P END I X (Continued)

Title
Source code
classification

Code
smell
detection

Error
handling

Bug
detection

Malicious
behaviour
detection

Vulnerability
detection

Performance
prediction

Type
signature
prediction

Semantic Code Repair using Neuro‐
Symbolic Transformation Networks

✓

FTCLNet: Convolutional LSTM with
Fourier Transform for Vulnerability
Detection

✓

DeepWukong: Statically Detecting
Software Vulnerabilities Using Deep
Graph Neural Network

✓

On the Effectiveness of Deep Vulnerability
Detectors to Simple Stupid Bug
Detection

✓

Neural Code Comprehension: A Learnable
Representation of Code Semantics

✓

VulDeeLocator: A Deep Learning‐based
Fine‐grained Vulnerability Detector

✓

Fault Localization with Code Coverage
Representation Learning

✓

SySeVR: A Framework for Using Deep
Learning to Detect Software
Vulnerabilities

✓

Statically Identifying XSS using Deep
Learning

✓

Hoppity: Learning graph transformations
to detect and fix bugs in programs

✓

Comparative Code Structure Analysis using
Deep Learning for Performance
Prediction

✓

PRE‐TRAINED CONTEXTUAL
EMBEDDING OF SOURCE CODE

✓

Path‐based function embedding and its
application to error‐handling
specification mining

✓

Neural Attribution for Semantic Bug‐
Localization in Student Programs

✓

Deep Representation Learning for Code
Smells Detection using Variational
Auto‐Encoder

✓

DeepBalance: Deep‐Learning and Fuzzy
Oversampling for Vulnerability
Detection

✓

MPT‐embedding: An unsupervised
representation learning of code for
software defect prediction

✓

TypeWriter: Neural Type Prediction with
Search‐Based Validation

✓

Improving Bug Detection via Context‐
Based Code Representation Learning
and Attention‐Based Neural Networks

NL2Type: Inferring JavaScript Function
Types from Natural Language
Information

✓

(Continues)

SAMOAA ET AL. - 383

A P P END I X (Continued)

Title
Source code
classification

Code
smell
detection

Error
handling

Bug
detection

Malicious
behaviour
detection

Vulnerability
detection

Performance
prediction

Type
signature
prediction

PathPair2Vec: An AST path pair‐based
code representation method for defect
prediction

✓

Software Defect Prediction via
Convolutional Neural Network

✓

Machine‐Learning Supported Vulnerability
Detection in Source Code

✓

VulDeePecker: A Deep Learning‐Based
System for Vulnerability Detection

✓

Deep Learning to Find Bugs (With focus
on name‐based bug detectors)

✓

Convolutional Neural Networks over Tree
Structures for Programming Language
Processing

✓

Deep Learning‐Based Vulnerable Function
Detection: A Benchmark

✓

A deep learning approach for detecting
malicious JavaScript code

✓

Automatically Learning Semantic Features
for Defect Prediction

✓

Neural program repair by jointly learning to
localize and repair

✓

DeepBugs: A Learning Approach to
Name‐Based Bug Detection

✓

Automated Vulnerability Detection in
Source Code Using Deep
Representation Learning

✓

Syntax and Sensibility: Using Language
Models to Detect and Correct Syntax
Errors

✓

A Novel Neural Source Code
Representation Based on Abstract
Syntax Tree

✓

TBCNN: A tree‐based convolutional
neural network for programming
language processing

✓

Convolutional Neural Networks over Tree
Structures for Programming Language
Processing

✓

DeepTLE: Learning Code‐Level Features
to Predict Code Performance before It
Runs

✓

Devign: Effective Vulnerability
Identification by Learning
Comprehensive Program Semantics via
Graph Neural Networks

✓

384 - SAMOAA ET AL.

C.4 Code‐Text and Related Papers

Title Identifier generation Code summarisation

code2vec: Learning Distributed Representations of Code ✓

code2seq: Generating Sequences from Structured Representations of Code ✓

A Transformer‐based Approach for Source Code Summarization ✓

Self‐Supervised Contrastive Learning for Code Retrieval and Summarization via Semantic‐
Preserving Transformations

✓

Learning to Represent Programs with Graphs ✓

A general path‐based representation for predicting program properties ✓

Open Vocabulary Learning on Source Code with a Graph‐Structured Cache ✓

Retrieval‐Augmented Generation for Code Summarization via Hybrid GNN ✓

STRUCTURED NEURAL SUMMARIZATION ✓ ✓

Improved Automatic Summarization of Subroutines via Attention to File Context ✓

Assessing the Generalizability of code2vec Token Embeddings ✓

Learning to Spot and Refactor Inconsistent Method Names ✓

Deep Code Comment Generation ✓

Fret: Functional Reinforced Transformer With BERT for Code Summarization ✓

SIT3: Code Summarization with Structure‐Induced Transformer ✓

Summarizing Source Code using a Neural Attention Model ✓

Blended, precise semantic program embeddings ✓

Code Generation as a Dual Task of Code Summarization ✓

Retrieval‐based Neural Source Code Summarization ✓

A Convolutional Attention Network for Extreme Summarization of Source Code ✓

Improving Automatic Source Code Summarization via Deep Reinforcement Learning ✓

C.5 Text‐Code and Related Papers

Title Program synthesis Code search

Self‐Supervised Contrastive Learning for Code Retrieval and Summarization via Semantic‐
Preserving Transformations

✓

When Deep Learning Met Code Search ✓

Code‐to‐Code Search Based on Deep Neural Network and Code Mutation ✓

Deep Code Search ✓

Improving Code Search with Co‐Attentive Representation Learning ✓

Code Generation as a Dual Task of Code Summarization ✓

SAMOAA ET AL. - 385

	A systematic mapping study of source code representation for deep learning in software engineering
	1 | INTRODUCTION
	2 | PRELIMINARIES
	2.1 | Token‐based representation
	2.2 | Tree‐based representation
	2.3 | Graph‐based representation

	3 | RESEARCH METHODOLOGY
	3.1 | Research questions
	3.2 | Literature search and selection
	3.3 | Inclusion criteria
	3.4 | Resulting study dataset
	3.5 | Data extraction, coding, and analysis
	3.6 | Data validation
	3.7 | Threats to validity

	4 | AN OVERVIEW OF USAGE OF DEEP LEARNING IN SE TASKS
	4.1 | High‐level process
	4.2 | Examples

	5 | MAIN ATTRIBUTES ANALYSIS
	5.1 | Software engineering tasks
	5.2 | Deep learning models
	5.3 | Source code representation
	5.3.1 | Alternative representation approaches
	5.3.2 | Code representation depending on code‐level granularity
	5.3.3 | Code representation for different programming languages

	6 | DETAILED ANALYSIS BASED ON SOFTWARE ENGINEERING TASKS
	6.1 | Software tasks and DL models
	6.2 | Software tasks and code representation

	7 | MAIN ATTRIBUTES – CROSS ANALYSIS
	8 | ANALYSIS OF HYBRID APPROACHES
	8.1 | Hybrid software tasks within one framework
	8.1.1 | Solving many tasks with one framework
	8.1.2 | Frameworks that solve two tasks

	8.2 | Hybrid representation approaches

	9 | GAPS IN THE LITERATURE
	10 | DISCUSSION
	11 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	Analysis of the main attributes
	B List of Venue Acronyms
	C SE Tasks and Related Papers
	show [sec_3]
	show [sec_3]
	show [sec_3]
	show [sec_3]

