
APIzation: Generating Reusable APIs from
StackOverflow Code Snippets

Valerio Terragni
University of Auckland

Auckland, New Zealand

v.terragni@auckland.ac.nz

Pasquale Salza
University of Zurich

Zurich, Switzerland

salza@ifi.uzh.ch

Abstract—Developer forums like StackOverflow have become es-
sential resources to modern software development practices. How-
ever, many code snippets lack a well-defined method declaration,
and thus they are often incomplete for immediate reuse. Developers
must adapt the retrieved code snippets by parameterizing the
variables involved and identifying the return value. This activity,
which we call APIzation of a code snippet, can be tedious and
time-consuming. In this paper, we present APIZATOR to perform
APIzations of JAVA code snippets automatically. APIZATOR is
grounded by four common patterns that we extracted by studying
real APIzations in GitHub. APIZATOR presents a static analysis
algorithm that automatically extracts the method parameters
and return statements. We evaluated APIZATOR with a ground-
truth of 200 APIzations collected from 20 developers. For 113
(56.50%) and 115 (57.50%) APIzations, APIZATOR and the
developers extracted identical parameters and return statements,
respectively. For 163 (81.50%) APIzations, either the parameters
or the return statements were identical.

Index Terms—APIs, software reuse, code snippets, StackOver-
flow, GitHub, program analysis, program synthesis

I. INTRODUCTION

Developers’ Q&A websites, such as StackOverflow (SO),

have gained a lot of popularity. These websites contain millions

of crowd-curated code snippets that represent solutions to

various programming tasks. These code snippets are extremely

useful to both developers and researchers. Developers often

search for them to draw inspiration or simply reuse them [1],

[2], [3]. Researchers often rely on SO to accomplish various

software engineering goals [4].

When reusing SO code snippets, developers and researchers

face a major obstacle: most SO code snippets do not com-

pile [5], [6], [7]. It mainly occurs because they are written

for illustrative purposes, to convey solutions at a high level,

without implementation details [8]. Terragni et al. have shown

that ≈92% of 491,906 analyzed SO code snippets are un-

compilable [5]. A common missing implementation detail

is the type declaration [5], [6]. For instance, the JAVA SO

code snippet in Fig. 1 (left side) misses the declaration of

type Calendar and Date. Researchers have tackled this issue

by proposing techniques to identify the import declarations

required to compile SO code snippets [5], [9].

Another common missing detail in SO code snippets is a

well-formed method declaration that defines the parameters

(input) and return statements (output) [10], [5]. Terragni et al.

have shown that ≈56% of JAVA SO code snippets constitute

dangling statements, which are not embedded in any class

or method declarations [5]. The SO code snippet in Fig. 1

(left side) is an example of dangling statements. One could

automatically wrap the code snippet inside a generic method

declaration [5], [6] (e.g., the main function). It would resolve

compilation errors but would not recover the proper method

declaration that exposes the intended input and output of the

code snippet. The absence of a proper interface prevents the

direct reuse of SO code snippets. Thus, some manual effort is

required to identify the inputs and outputs of the code snippets.

We use the term “APIzation” to indicate the activity of

creating an Application Program Interface (API) for those SO

code snippets without a well-formed method declaration. Fig. 1

(center) shows a manual APIzation of a SO code snippet.

In this paper, we study the automatic APIzation of JAVA

SO code snippets, which would bring important benefits.

Developers would reduce the effort of integrating SO code

snippets into their codebases, which is known to be a tedious

and time-consuming activity [11]. Given an automatically

generated API of a SO code snippet, developers can either copy

and paste the API in the codebase or incorporate the method

body of the API inside an existing method. The presence of

an API facilitates the latter option. Indeed, an API explicitly

shows the input and output of the code snippet, which helps

to both understand and incorporate the SO code. Moreover,

the automatic APIzation SO code snippets can lead to a large

catalog of code samples with well-defined interfaces, providing

value for both developers and researchers.

Towards these goals, we conducted an investigatory study to

understand how developers perform APIzations from SO code

snippets to JAVA methods found in GitHub (GH). The insights

gained from this study led to four common APIzation patterns

to extract method parameters and return statements. Grounded

by these patterns, we propose a technique called APIZATOR

for the automated APIzation of SO code snippets. To the best

of our knowledge, APIZATOR is the first technique of its kind.

APIZATOR statically analyzes a given code snippet to find

matches for the four patterns. If it finds matches, APIZATOR

extracts the parameters and return statements and outputs a

compilable API. For completeness, APIZATOR uses a Part-of-

Speech (POS) Tagger to generate a method name from the SO

question title, and creates a JAVADOC containing the title and

link of the corresponding SO page.

542

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00055

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

85
76

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Human

1
2
3
4
5
6
7
8
9
10
11
12

Fig. 1. APIzation of a SO code snippet. APIZATOR and the human produced identical APIs (except for the method name and JAVADOC).

We evaluated APIZATOR with a ground truth of 200
APIzations performed by 20 human participants, obtaining

200 pairs of human- and tool-produced APIs. We compared

each pair to assess the effectiveness of APIZATOR. For 113
(56.50%) and 115 (57.50%) API pairs the parameter list and

return statements are identical, respectively. For 163 (81.50%)

APIs generated by APIZATOR either the return statements or

the method parameters are identical to those produced by the

developers. For instance, Fig. 1 (right side) shows the API

produced by APIZATOR, which is identical to the one created

by the developer (excluding the method name and JAVADOC).

To demonstrate one of the possible usage scenarios of

APIZATOR, we release a search engine at the address https:

//apization.netlify.app/search/ and as part of our replication

package [12]. The users can search for SO code snippets with

a natural language query as they would do with a standard

search engine. The search results show the SO page as well

as its API automatically generated by APIZATOR.

To summarize, the main contributions of this paper are:

• studying the problem of automatically transforming SO

code snippets into APIs;

• analyzing real APIzations across SO and GH projects,

extracting four common APIzation patterns;

• proposing a technique called APIZATOR to transform SO

code snippets into well-formed JAVA method declarations;

• evaluating APIZATOR against a ground truth of 200
APIzations performed by 20 JAVA developers;

• releasing at the address https://apization.netlify.app all the

experimental data;

• releasing 109,930 APIs automatically extracted from SO

code snippets, which could power SO-centric research.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this paper, we target JAVA code snippets found in

StackOverflow (SO), the most popular Q&A website for

developers [13]. The process of APIzation takes in input a

SO code snippet and generates a JAVA method declaration. We

now describe in detail the input and output of such a process.

Input: A JAVA code snippet from SO. A SO page is composed

of a question post and a series of answer posts. Each question

post contains a title, a series of tags, and a description. A post

can contain one or more code snippets. A Code Snippet (CS)
is an ordered sequence of source code lines.

Output: A compilable and well-formed JAVA method
declaration that defines the code snippet in input. A method
declaration, which we call Application Program Interface (API),

consists of the following six attributes: (i) modifiers, which set

the access level (e.g., public), or achieve specific functionalities

(e.g., static); (ii) return type, which indicates the type of value

that the method returns (void if none); (iii) method name, which

describes the behavior of the method; (iv) parameter list, which

specifies the types and identifiers of the method arguments;

(v) throws clause, which declares any checked exception classes

that the method body can throw; (vi) method body, which

contains the statements that implement the method.

The method body of a well-formed API references each of

the parameters and contains, if the return type is not void, one

or more return statements. To make an API compilable, it has

to be declared inside a class (e.g., Human2109186 in Fig. 1) that

contains the required import declarations (imports in short)

(e.g., java.util.Calendar and java.util.Date in Fig. 1). At

each class is associated a classpath to the library JARS that

declare the types in imports (e.g., JDK in Fig. 1).

Most JAVA code snippets from SO are composed of dangling

statements not enclosed in any method declaration [5], [14],

[6] (see Fig. 1). The process of APIzation aims at generating

well-formed method declarations for such code snippets. It

achieves this by performing six actions:

1) choose a method name, e.g., getFirstDayOfWeek in Fig. 1;

2) recover missing declarations of variables or types from

the code snippet, e.g., Calendar and Date in Fig. 1;

3) identify which variables in the snippet are the intended

input parameters, e.g., variables week and year in Fig. 1;

4) remove the declarations of such variable from the code

snippet, e.g., int week = 3; in Fig. 1;

5) infer the output of the snippet, if any, and add a return

statement for it, e.g., return calendar.getTime() in Fig. 1;

6) enclose the resulting statements in a method declaration

with proper parameters and return type, e.g., public static

Date (int week, int year) in Fig. 1.

Problem definition: Given a JAVA code snippet, the

process of APIzation generates a compilable and well-

formed method declaration for the given code snippet.

543

III. UNDERSTANDING REAL WORLD APIZATIONS

This section presents an investigatory study to understand

how developers perform APIzations. The insights gained from

this study led to four common APIzation patterns that establish

the foundations of our proposed technique. To collect manual

APIzations of StackOverflow (SO) code snippets, we relied on

GitHub (GH). Our goal is to find code reuses across SO code

snippets and GH projects that represent APIzations. Fig. 2

gives two examples of such manual APIzations. We release

the data of our investigatory study in our replication package,

published at https://apization.netlify.app/study/.

A. Data Collection

Researchers have experimented two main approaches to

identify code reuses across SO and GH [15], [16], [17], [18],

[19], [20], [19]: (i) search for explicit SO web links in GH code

comments or JAVADOC; (ii) search for code clones between

SO code snippets and GH code.

Both of these approaches have pros and cons. Relying only

on explicit SO web links likely misses many code reuses.

In fact, GH developers often do not give proper credit when

reusing SO code snippets [18], [20]. It can also lead to spurious

code reuses as GH developers may cite a SO post because

it discusses a particular issue, which is unrelated to code

reuse [20]. Relying only on code clones has the advantage

to identify code reuses even without (rare) explicit SO links.

However, code clones cannot guarantee that the GH developers

performed the APIzation from SO [20], [15].

Because of the complementarity of these two approaches,

we decided to consider those code reuses that are identified

by both approaches. We will probably miss many code reuses,

but we are more confident that the identified ones are genuine.

Thus, our goal is to identify pairs 〈CS,API〉 (where CS is a

SO code snippet and API a GH method) that satisfy all of

these three criteria: (i) the comments or JAVADOC of API have

an explicit link to the SO page containing CS; (ii) API and

CS are code clones; (iii) API is an APIzation of CS. We now

describe in more detail how we identified such pairs.

Find candidate pairs. We queried the latest snapshot of GH on

GOOGLE BIGQUERY [21], which contains ≈1 million projects

with the tag JAVA. We identified 29,035 unique JAVA files

containing explicit links to SO pages. From the retrieved Java

files, we identified all the GH methods (API) containing the

explicit SO link as a code comment or in the JavaDoc. For each

SO link, we extracted the corresponding SO code snippet(s) by

querying the latest SO dump. We then pruned all those pairs in

which CS already contains a well-formed method declaration,

or CS has less than six lines.

Code clone detection. For each candidate pairs 〈CS,API〉, we

searched for TYPE 3 code clones [22], i.e., syntactically similar

code with inserted, deleted, or updated statements. We chose

TYPE 3 clones because both TYPE 2 and TYPE 4 are inadequate

for our purposes. TYPE 2 clones require syntactically equivalent

code (the only allowed variations are in identifiers, types,

whitespace, layout, and comments). This is too restrictive

because the APIzations often create APIs with fewer or more

statements than the SO code snippets. For example, the human

APIzation of Fig. 1 deletes the SO lines 2 and 3 and updates

line 12. TYPE 4 clones allow semantically equivalent but

syntactically different code. This is too permissive because we

are only interested in explicit code reuses.

To detect TYPE 3 clones, we automatically perform alpha-
renaming of the variables (e.g., int a = 5 becomes int int0 =

5). If there are multiple variables with the same type, we use

a progressive id as a suffix. For example, int a = 5; int b

= 10 becomes int int0 = 5; int int1 = 10. We also removed

comments, new lines, and formatting characters. We treated

a pair 〈CS,API〉 as a TYPE 3 code clone if at least 70% of

CS source code lines are contained in API (we opted for 70%
following Zhang et al. [19]). This resulted in 330 code clone

pairs, referring to 199 unique SO answer posts.

Note that TYPE 3 code clone detection excludes by default

TYPE 1 and TYPE 2 clones as they require a 100% similar

code. This is impossible in our case since APIs always contain

a method signature, while the considered code snippets do not.

Manual check. We manually checked each of the 330 code

clone pairs to prune those in which the APIs do not represent the

APIzation of CS. We pruned the pairs that were spurious code

clones (the matched lines were mostly common lines of code

such as try{ and catch(). We pruned the pairs that were valid

clones, but CS was incorporated inside the GH method. These

pairs are not APIzations because the GH method declaration

does not strictly relate to the SO code snippet.

B. Analysis of the Results

We manually analyzed the retained 135 pairs to study the

variables in the SO code snippet that became method parameters

or return statements in the GH method. We followed a coding

process inspired by grounded theory [23], which derives new

theories and concepts by analyzing the data.

We distributed between the two of us the 135 pairs of the

SO snippet and matching GH method. For convenience, we

used a diff tool to generate a visual representation of the

code differences between the snippet and method. Such a

representation helped us to quickly identify the APIzation

activity performed by the developers. During the open coding
stage, we analyzed each of the assigned pairs to give a distinct

code for each of the observed phenomena, i.e., APIzations. In

particular, the question that drove the open coding was: “What

are the characteristics of the variables in the SO snippet that

became parameters and return statements in the GH method?”

Examples of produced codes are: “undeclared variable”, “the

variable has a constant value”, and “the variable is used as an

argument in a System.out.println invocation.”

Then, we refined the codes by grouping similar concepts

and finding connections between them, i.e., axial coding. Then,

we concluded the patterns’ identification with selective coding.

Each of the authors independently analyzed the pairs and

eventually discussed the results to reach a consensus. Finally,

we identified four common patterns (PATT-notdecl, PATT-

544

1
2
3
4
5
6
7
8
9
10

PA
TT

–n
ot

de
cl

 a
nd

 P
AT

T–
la

te
st

PA
TT

–c
on

st
 a

nd
 P
AT

T–
sy

so

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fig. 2. Examples of APIzation patterns found in APIzations from StackOverflow to GitHub.

const, PATT-latest, and PATT-syso) that characterize and

define general APIzation activities.

1) Method Parameters: The 135 SO code snippets reference

509 variables with an average of 3.77 variables per code snippet.

Among these 509 variables, 45 became method parameters in

the corresponding GH method. Among these 45 variables, 32
(71.11%) match PATT-notdecl and 9 (20.00%) match PATT-
const. For the remaining four variables, we were not able to

generalize any pattern.

PATT-notdecl. A variable v that is referenced in CS is
extracted as a parameter if CS lacks the declaration of v.

Fig. 2 (top) shows one of the analyzed pairs that exhibits

such a pattern (the SO code snippet (CS) is on the left and the

GH method (API) on the right). The line 4 of the CS references

an undeclared variable tag_xml, and the GH developer extracted

tag_xml as a method parameter at line 7 (renaming it to s). A

possible rationale for this pattern is that undeclared variables

in SO code snippets are commonly intended as the (implicit)

inputs of a programming task.

PATT-const. A variable v declared in CS is extracted as a
parameter if (i) CS initializes v with a hard-coded value; and
(ii) CS does not have loops that modify the value of v.

Fig. 2 (bottom) shows a pair that manifests such a pattern.

The SO code snippet declares four variables: str, findStr,

lastIndex, and count. It initializes them with hard-coded values

that embed data directly into the source code. These four

variables match criterion (i), but only str and findStr match

also criterion (ii). In fact, only str and findStr became method

parameters in the GH method. The variables lastIndex and

count are excluded because the SO while loop can modify their

values. Extracting such variables would change the semantics

of the while loop. For example, if count is extracted as a

parameter, a user can invoke the API with a count value

different from zero, making the API return a meaningless value.

A possible rationale for this pattern is that SO code snippets

often exemplify programming tasks, and thus the hard-coded

values represent a particular instance of the inputs.

2) Return Statements: Among the 135 GH methods, 63
(46.67%) lack return statement(s) (the return type is void)

and 72 (53.33%) have return statement(s). Among such 72
GH methods, 31 (43.06%) match PATT-latest, and 6 (8.33%)

match PATT-syso. For the remaining methods, we could not

generalize any pattern or the SO code snippet already contained

return statement(s).

PATT-latest. The assignment of a variable in CS becomes
the return statement if it is the last statement in CS.

For example, the SO snippet in Fig. 2 (top) ends with the

assignment of the hash variable (we ignored exception handling

as last statements because they are unrelated to the semantics

of the code snippet), and the GH method returns hash of type

String. Intuitively, the last statement of a SO snippet often

characterizes its output. Indeed, it is unlikely that developers

end the snippet with a value irrelevant to the final intent of

the programming task.

PATT-syso. If the last statement in CS is a System.out.println

call, its argument becomes the return statement.
An example of such a pattern is the SO snippet in Fig. 2 (bot-

tom). The code snippet ends with System.out.println(count),

and the GH method returns count of type int. Because SO

users write code snippets for illustration purposes, they often

add a print of the output value to show the result when the

snippet is being executed.

545

3) Manual Application of the Patterns: After identifying the

four patterns, we applied them to the whole dataset to evaluate

if they lead to spurious parameters and return statements.

Among the 464 SO variables that did not become parameters

in the corresponding GH methods, 14 (3.02%) and 8 (1.72%)

variables match PATT-notdecl and PATT-const, respectively.

Among the 93 GH methods in which we did not identify any

pattern or lack return statements (i.e., return type is void), the

patterns PATT-latest and PATT-syso match 4 (4.30%) and 1
(1.08%) variables, respectively.

This indicates that the four patterns lead to a few spurious

parameters and return statements. Thus, finding matches of

these patterns in SO code snippets is a viable solution for

automating the APIzation process.

IV. APIZATOR

This paper presents APIZATOR to automatically transform

JAVA SO code snippets into reusable and compilable APIs.

Algorithm 1 describes the process of APIZATOR in detail.

Input and output. APIZATOR takes as an input: (i) CS, a SO

code snippet; (ii) SO-page, the SO page of the snippet, which

APIZATOR uses to generate the method name; (iii) JARs, a

set of common JAVA libraries to recover the missing import

and variable declarations [5]. APIZATOR outputs (i) API, the

method declaration of CS; (ii) imports, the import declarations

of the non-primitive types that API references; (iii) classpath,

the libraries in JARs that declare the types in imports.

Preliminary check (Lines 1 to 3). Algorithm 1 starts by check-

ing if CS already contains import declarations (Line 1). If yes,

it extracts them and searches in JARs for the corresponding

libraries, which it adds to the classpath. If not (the common

case), it creates an empty imports list and an initial classpath
with only the JDK JAR library. Next, it checks if CS already

defines a well-formed and compilable API. If so, it returns CS,

imports, and classpath (Lines 2 to 3), otherwise it starts the

“APIzation” process.

Initialization of the API (Line 4). The “APIzation” process

begins by initializing API, the method declaration for CS.

By default, the modifiers of API are public (because APIs

must be accessible by any other class) and static (to avoid

instantiating objects for invoking the API). The throws-clause of

API is the generic java.lang.Exception. APIZATOR initializes

the method-body of API with CS, the return type with void

and the parameter list with the empty list.

Method name generation (Line 5). For completeness, APIZA-

TOR generates a method name for the API from the title of the

SO page associated with the code snippet [24]. Indeed, the title

of the SO page often summarizes the intent of the programming

task. APIZATOR relies on a Part-of-Speech (POS) Tagger [25]

to assign parts of speech (e.g., nouns, verbs, and adjectives)

to each word in the title. Then, APIZATOR creates the method

name by combining the main “verb” of the sentence and the

corresponding “direct object” (i.e., noun). We consider these

two parts of speech because method names are typically verbs

or verb phrases. We do not claim this to be a contribution to

Algorithm 1: APIZATOR

input : CS = 〈s1, . . . , sn〉, a SO code snippet
SO-page, the SO page of CS
JARs, a set of external libraries

output : API, a method declaration for CS
imports, the import declarations for API
classpath, the classpath for API

1 〈imports, classpath〉 ← GETORDEFAULT(CS, JARs)
2 if CS is a well-formed method declaration (CS ≡ API) then
3 return 〈API, imports, classpath〉
4 API ← CREATEINITIALMETHODDECLARATION(imports, CS)
5 API.method-name ← CREATEMETHODNAME(SO-page)
6 while COMPILE(API, imports, classpath) → errors �= ∅ do
7 if errors ⊆ missing-type-decl then
8 〈imports, classpath〉 ← CSNIPPEX(errors, JARs, imports,

classpath)

/* PATT-notdecl */
9 else if errors ⊆ missing-variable-decl then

10 for v ∈ (errors ∩ missing-variable-decl) do
11 〈τ , imports, classpath〉 ← RECOVERVARTYPE(v, API,

JARs, imports, classpath)
12 T [v] ← τ
13 add 〈τ , v〉 to API.parameter-list

14 else return ∅

/* PATT-const */
15 LP-VARS ← GETLOOPCHANGINGVARS(API.method-body)
16 for si ∈ API.method-body do
17 case si : τ v = ε do // Variable decl. and init.
18 T [v] ← τ
19 add v to ALREADY-INIT-VARS
20 if ISHARDCODED(τ , ε) ∧ v � LP-VARS then
21 add 〈τ , v〉 to API.parameter-list
22 remove si from API.method-body

23 case si : τ v do // Variable declaration
24 〈T [v], S[v]〉 ← 〈τ , si〉
25 case si : v = ε do // Variable assignment
26 if v �∈ ALREADY-INIT-VARS then
27 add v to ALREADY-INIT-VARS
28 if ISHARDCODED(τ , ε) ∧ v �∈ LP-VARS then
29 add 〈T [τ], v〉 to API.parameter-list
30 remove si from API.method-body
31 remove S[v] from API.method-body

/* PATT-latest */
32 case sn : τ v = ε do // Variable decl. and init.
33 API.return-type ← τ
34 replace sn in API.method-body with return ε;

35 case sn : v = ε do // Variable assignment
36 API.return-type ← T [v]
37 replace sn in API.method-body with return ε;

/* PATT-syso */
38 case sn : System.out.println(string-literal + ε) ∨

System.out.println(ε) do
39 API.return-type ← GETTYPEOFEXP(ε, imports, classpath)
40 replace sn in API.method-body with return ε;

41 otherwise do
42 API.return-type ← void

43 return 〈API, imports, classpath〉

this work. In the future, we plan to investigate state-of-the-art

approaches for generating method names [26].

For a statically-typed programming language such as JAVA,

type inference is precise and unambiguous only with compilable

code [27]. APIZATOR requires complete type information to

546

know the type of the method parameters and return statements.

However, assuming only compilable code is infeasible because

most SO code snippets do not compile [5], [6], [9]. Line 6 of

Algorithm 1 tries to compile the API (wrapping it in a synthetic

JAVA class) with the current imports and classpath. If any

compilation errors arise, APIZATOR attempts to fix them. Note

that, APIZATOR needs to re-compile API iteratively because

fixing a compilation error may reveal others [5]. APIZATOR

supports two types of compilation errors: (i) missing type

declarations (Line 7) and (ii) missing variable declarations

(Line 9). For other error types APIZATOR terminates (Line 14).

Recover missing type declarations (Lines 7 to 8). APIZATOR

relies on CSNIPPEX [5] to fix missing type declarations.

CSNIPPEX recovers the import declarations that fix such errors

by querying the fully-qualified names of the classes declared

in JARs. This is challenging because there are often many

fully qualified names with the same simple name. CSNIPPEX

addresses the challenge with a greedy algorithm based on the

clustering hypothesis: “the referred library classes in a JAVA

source file often come from the same libraries, and hence their
import declarations tend to form clusters that share common
package names” [5]. For example, the code snippet in Fig. 2

(top) leads to two missing type declarations: MessageDigest and

NoSuchAlgorithmException. CSNIPPEX identifies the correct

import declarations because they share the same package

name java.security. CSNIPPEX adds the corresponding JAVA

libraries in the classpath and leverages the feedback of the

compiler to check if the errors are fixed.

Recover missing variable declarations (PATT-notdecl,
Lines 9 to 13). APIZATOR recovers missing variable dec-

larations to fix the compilation errors and to find matches

of PATT-notdecl, which considers undeclared variables as

method parameters. To recover missing variable declarations,

APIZATOR relies on the RECOVERVARTYPE function (Line 11).

Given an API with an undeclared variable v, this function

identifies the most plausible type of v by leveraging the usages

of v in the API, which follows the BAKER approach [28].

For example, the SO code snippet in Fig. 2 (top) lacks the

declaration of variable tag_xml. APIZATOR correctly infers

that the type of tag_xml is java.lang.String because (i) the

code snippet invokes the method public byte[] getBytes()

using tag_xml as the object receiver, and (ii) java.lang.String

declares a method with the same name and return type.

When there are multiple plausible types, APIZATOR uses a

successful compilation as a proxy for correctness. In fact,

API compiles without errors if the declaration of tag_xml has

type java.lang.String. Line 11 of Algorithm 1 also updates

imports and classpath accordingly, which remain unchanged

in our example (the package java.lang is imported by default).

Next, APIZATOR updates the map T , which stores for each

declared variable in CS its type. Line 13 of Algorithm 1 adds

tag_xml as a parameter. This is the correct parameter, as it

was also used by the GH developer that performed the manual

APIzation (tag_xml is renamed to s).

Recognize hard-coded initializations (PATT-const, Lines 15
to 31). Function GETLOOPCHANGINGVARS returns the vari-

ables LP-VARS in the method body that have at least one

assignment inside a loop (Line 15 of Algorithm 1). PATT-
const needs to identify such variables because they will not

be considered as parameters. Line 16 of Algorithm 1 scans

the statements in API.method-body to search for variable

initializations that meet the conditions of PATT-const. The

scan considers the following three statements types:

1) Variable declaration and initialization τ v = ε. For

example, String findString = "hello" in Fig. 2 (τ = String, v
= findString, and ε = "hello"). When APIZATOR encounters

such statements, it maps τ to v, and it adds v to ALREADY-
INIT-VARS, which is a set that maintains the variables that are

already initialized. The function ISHARDCODED takes in input

the type τ and the expression ε and it returns true if ε is a

hard-coded value, false otherwise.

If τ is primitive or String, the function returns true if ε
does not contain identifiers (i.e., variable, class, method names),

false otherwise. Identifiers characterize data dependencies.

For example, ISHARDCODED(String, "hello") returns true
because "hello" does not contain identifiers.

As another example, consider the following code snippet.

String a = "world";
String b = "hello" + a;

ISHARDCODED (String, "hello" + a) returns false be-

cause ε = "hello" + a is data dependent to the variable a.

If τ is non-primitive, ε must always contain at least one

identifier (null is also an identifier). For example the ε of

the statement Calendar calendar = Calendar.getInstance(); in

Fig. 1 has Calendar and getInstance as identifiers. As such,

for non-primitive types, ISHARDCODED returns true if τ is

a subclass of java.util.Collection and after the statement si
follow n > 1 statements that add elements to the collection

(e.g., invoke add methods for java.util.List, and put methods

for java.util.Map). APIZATOR makes a similar consideration

for matrices and arrays.

Line 20 Algorithm 1 checks if the variable v meets both

PATT-const criteria (v is initialized with a hard coded value

and is not a loop variable). If yes, it adds v of type τ to the

parameter list and removes the declaration statement si from

the method body. For example, the statement String findStr =

"hello" at Line 2 in Fig. 2 (bottom) meets both requirements,

and thus APIZATOR makes findStr a method parameter and

removes the statement.

2) Variable declaration τ v. These statements are only decla-

rations without initializations. For such statements, APIZATOR

saves the type τ of v and statement si. APIZATOR needs this

information if later it encounters the initialization of v.

3) Variable assignment v = ε. At Line 26, Algorithm 1

checks if v belongs to ALREADY-INIT-VARS. If yes, APIZA-

TOR skips the statement because it already encountered the

initialization of v. If not, APIZATOR has found the initialization

of v. Then, it updates ALREADY-INIT-VARS and checks if the

PATT-const criteria are met. If yes, it recovers the type of v

547

from T and adds the v to the parameter list. Then, it removes

from the method body both the statement that declares v (S[v])
and the statement that initializes v (si).

Check the last statement (PATT-latest, and PATT-syso,
Lines 32 to 43). At Lines 32 to 43, Algorithm 1 analyzes the

last statement (sn) to decide whether it should be considered

as the return statement.

If sn is a variable declaration or an assignment, then sn
matches PATT-latest, and thus APIZATOR replaces sn with

a statement that returns the expression ε. APIZATOR recovers

the type of ε directly from sn (if sn is a declaration) or from

T (if sn is an assignment).

If sn is an invocation to System.out.println, then sn
matches PATT-syso. Algorithm 1 extracts the argument ε
of the invocation by removing the first string-literal (if

it exists), which is likely to represent a placeholder (e.g.,

System.out.println("result :" + s)). Given ε, Algorithm 1

recovers τ , the type of ε, which will be the return type of

API. Although System.out.println handles String objects, τ
is not necessarily String. In fact, System.out.println(object)

invokes that object’s toString() method to convert the object to

a String representation. For example, given the last statement

System.out.println(count) in Fig. 2 (bottom), the return type

should be int and not String. The function GETTYPEOFEXP

analyses ε and classpath to recover τ . If ε is a variable v,

the function recovers τ from the map T [v]. If ε is a method

invocation m, the function consults the declaration of m in

classpath to get its return type.

V. EVALUATION

This section discusses a series of experiments that we

conducted to evaluate APIZATOR. In the context of our study,

we formulated the following three research questions:

RQ1 Does APIZATOR generate APIs that are identical to
the ones that a human would produce?

RQ2 How effective the APIZATOR algorithm is in identifying
the method parameters?

RQ3 How effective the APIZATOR algorithm is in identifying
the return statements?

To answer these research questions, we collected a ground

truth of human-produced APIs. We decided not to rely on the

GitHub (GH) dataset used in Section III to avoid overfitting

(APIZATOR is based on the insights extracted from the GH

dataset). Instead, we asked 20 human participants to build
a ground-truth of 200 APIs by manually performing the

APIzation of 200 SO code snippets. All the evaluation data

is available in our replication package [12] and published at

https://apization.netlify.app/evaluation/.

A. Evaluation Setup

1) Creating a Collection of APIs from StackOverflow: We

considered the SO data dump of May 2019 [29], which contains

1,014,980 SO pages with the tag JAVA. From these SO pages,

we selected all the 1,730,251 SO answer posts with at least

one code snippet.

Identifying the compilable SO code snippets. We first ran

CSNIPPEX on each of the 1,730,251 SO answer posts, to

identify those code snippets for which CSNIPPEX is able to

recover the missing type declarations. CSNIPPEX requires a set

of common JAVA libraries JARs as an input [5]. We obtained

such a set by downloading the latest JAR of the top three

libraries of each category in the MAVEN REPOSITORY [30].

We then used the dependency resolver of MAVEN to identify

the additional JARs that belong to the runtime dependencies

of the selected libraries. In total, we obtained 748 JAR files.

Running CSNIPPEX with a time-budget of 5 seconds for each

post, it returned compilable JAVA files for 141,064 SO posts.

Creating the SO APIs. We ran APIZATOR on these 141,064
SO answer posts with a time budget of 10 seconds each,

obtaining 109,930 APIs. APIZATOR skipped 31,134 out of

the 141,064 posts because the APIzation is either impossible

or ambiguous. It is impossible for abstract methods and for

JAVA files with only field or class declarations. It is ambiguous

for files that have more than one public method or that declare

more than one class. In such cases, APIZATOR cannot infer

which public method is the intended API.

It is worth noting that, for each of the produced APIs,

APIZATOR generates a JAVADOC containing the link to the

original SO post from which the code was taken (see Fig. 1).

This is compliant with the SO Terms of Service, which,

at present, states that user contributions are licensed under

Creative Commons Attribution-ShareAlike1. The specific license

terms depend on the date of publication of the SO post, but

all of them require appropriate credit to the authors of the

content, i.e., a link to the SO post. In fact, the CC BY-SA
license allows re-distribution and re-use of a licensed work

(even for commercial use) on the condition that the creator

is appropriately credited. However, it is the responsibility of

the end user to keep the link of the SO post associated with

the APIZATOR-generated APIs. Similarly, manually copying

and adapting a SO snippet should require appropriate credit

by including a link to the SO post [18].

2) Selecting the APIs for the Evaluation: From the 109,930
APIs we selected those that satisfy five properties:

I. The SO page of the API is a “how to” question. Following

previous SO studies, we assume that the most useful code

snippets are in answers to “how to” questions [31], [10]. We

identified such questions by the presence of the word “how”
in the SO page title [31].

II. The SO post associated with the API is the accepted answer

or has a score of at least two (two is the average score in SO).

This is to select high-quality code snippets.

III. The SO post associated with the API contains exactly

one code snippet. This is to avoid ambiguity, as multiple code

snippets in the same SO post often refer to alternative solutions

of the same programming task. Having only one code snippet,

the human participant does not need to decide which one to

consider.

1https://stackoverflow.com/legal/terms-of-service/public#licensing

548

TABLE I
RQ2 ANALYSIS AND COMPARISON OF THE HUMAN- (PH) AND APIZATOR-PRODUCED (PA) PARAMETER LISTS

Param.
|PH|

Human
APIs

PH ≡ PA |PH \ PA| |PH ∩ PA| |PA \ PH| Jaccard Distance (JD)

Count % Mean Min Mdn Max Mean Min Mdn Max Mean Min Mdn Max Mean Min Mdn Max

0 58 45 77.59 – – – – – – – – 0.36 0.00 0.00 5.00 0.22 0.00 0.00 1.00
1 93 60 64.52 0.32 0.00 0.00 1.00 0.68 0.00 1.00 1.00 0.13 0.00 0.00 2.00 0.34 0.00 0.00 1.00
2 35 7 20.00 1.14 0.00 1.00 2.00 0.86 0.00 1.00 2.00 0.29 0.00 0.00 2.00 0.58 0.00 0.50 1.00
≥3 14 1 7.14 2.86 0.00 3.00 6.00 0.64 0.00 0.00 4.00 0.21 0.00 0.00 1.00 0.82 0.00 1.00 1.00

Total (≥ 0) 200 113 56.50 0.77 0.00 0.50 6.00 0.72 0.00 1.00 4.00 0.23 0.00 0.00 5.00 0.38 0.00 0.00 1.00

IV. The import declarations of the API do not refer to any

external libraries other than the JDK. Participants might produce

incorrect APIzations, for instance, if they are unfamiliar with

a particular library.

V. The SO code snippet associated with the API does not
contain a well-formed method declaration. In such cases, the

code snippet is already an API, and Algorithm 1 has no effect.

A total of 9,901 APIs satisfy all of these properties. We

sorted them by the view count of the corresponding SO post

and selected the first 200 APIs. It is worth noting that we

had to manually discard some of the APIs in which the

APIzation is not a reasonable operation (even though the above-

mentioned properties were satisfied). For example, when the

SO code snippet is not a programming task (e.g., it shows usage

examples of JDK classes), or it is semantically incomplete (e.g.,

it contains placeholders for missing functionality). The 200
APIs have 11.45 lines of code on average. The corresponding

SO posts have an average number of views of ≈66,000, and

an average score of 46.62.

3) Ground-Truth of Human APIzations: We partitioned the 200
code snippets in 200 disjoint sets and sent them to 20 expert

JAVA developers in the authors’ circle of acquaintances. Each

participant had assigned ten SO posts. The 20 participants come

from seven different countries and constitute a heterogeneous

group of ten Ph.D. students majoring in software engineering,

five senior software engineering researchers, and five profes-

sional JAVA developers. The participants have several years of

experience in JAVA programming: 9.8 years on average (min

1, median 9.5, and max 15). None of the 20 participants knew

that APIZATOR exists and how it generates APIs. Thus, they

performed the manual APIzation without biases.

Experiment description. Each participant received a script that

interacts via the command line. The script gives the instructions

and monitors the APIzation time. It was an uncontrolled

experiment, thus they ran the script at their convenient time.

We decided to avoid guidelines to let the participants decide

what APIzation means to them. Instead, the script exemplifies

the concept with an example. After showing the example, the

script shows the SO page of the first assigned code snippet. It

then asks the participant to read the SO page to understand the

semantics of the code snippet, and to write in the IDE a method

declaration for it. This process repeats until the participant

completes the ten assigned code snippets. This led to 200 pairs

〈APIH,APIA〉 of human- (APIH) and APIZATOR-produced

(APIA) APIs from the same SO code snippet. We release

Fig. 3. Distribution of the number of AST differences.

the instructions of the script in our replication package [12]

and published at https://apization.netlify.app/evaluation/script/.

Pre-processing the human APIs. Before comparing the

pairs, we inspected the 200 human-produced APIs to fix

any compilation errors and to check whether the participants

renamed any parameters. We corrected one compilation error,

and we renamed the parameters of 27 human APIs to match the

ones automatically generated by APIZATOR. We also removed,

from 15 human-produced APIs, variable declarations for return

statements that APIZATOR avoids by construction. For example,

int a = b + c; return a; becomes return b + c;.

B. RQ1: Identical APIs

To check for identical APIs, we compared each pair

〈APIH,APIA〉 with the state-of-the-art source code differencing

tool GUMTREE [32]. When comparing the pairs, we excluded

differences in method names. GUMTREE implements an

Abstract Syntax Tree (AST) differencing algorithm that takes

into account fine-grained AST differences while ignoring

irrelevant differences in the source code, i.e., new lines, white

spaces, and comments.

Fig. 3 shows the distribution of the number of AST

differences of the 200 pairs, which ranges from 0 to 99
(average 9.85 and median 7). Interestingly, 63 (31.50%) APIs

generated by APIZATOR are identical to the human-produced

ones (〈APIH,APIA〉 has zero AST differences). The pair in

Fig. 1 is one of such identical APIzations in our experiments.

Achieving identical APIzations is an unrealistic expectation,

as in some cases, the participants modified the method body

of the API by removing System.out.println statements or

unnecessary variables. RQ2 and RQ3 give more insights about

the dissimilar pairs by studying the APIZATOR effectiveness in

extracting the parameters and return statements while ignoring

superficial differences in the method bodies.

RQ1 – In summary: APIZATOR generated 63 (31.50%)

APIs identical (including the method-body and import

declarations) to the human-produced ones.

549

C. RQ2: Method Parameters

To answer RQ2, we extracted and compared the parameter

lists of the 200 pairs. Given a pair 〈APIH,APIA〉, we use PH and

PA to denote the parameter lists of APIH and APIA, respectively.

Note that the order of elements in the parameter list is irrelevant,

thus we considered PH and PA as unordered sets. For example,

for the API pair of Fig. 1, PH = PA = {int week, int year}.

Table I breaks down the human-produced APIs (APIH) by the

number of parameters (the cardinality of PH). The participants

produced 58 APIs without parameters, and 142 APIs with one

or more parameters (Column “Human APIs ” of Table I). The

rest of Table I compares PH with the corresponding PA.

Column “PH ≡ PA” of Table I indicates the number and

percentage of APIs pairs with equivalent PH and PA. PH and

PA are equivalent if they are both empty, or contain identical

parameters. Two parameters ph ∈ PH and pa ∈ PA are identical

if and only if they (i) have the same type; (ii) have the same

identifier, i.e., variable name; (iii) refer to the same variable

in the method body. For example, in the pair of Fig. 1, the

parameters int week PH and int week in PA are identical. They

have the same type and identifier, and the two bodies refer

to them in the same way. APIZATOR generates 113 (56.50%)

APIs with equivalent parameter lists to the human-produced

ones (PH ≡ PA). When the human-produced APIs have two

or more parameters, the number of equivalent pairs decreases.

This is an expected result. Intuitively, the more parameters

the manually-crafted ground truth API has, the harder it is

for APIZATOR to extract an identical parameters list. It is

worth mentioning that, in principle, there is no difference if an

API has one or more parameters. This is because Algorithm 1

considers each variable in the code snippet individually. In

practice, we observed that the majority of human-produced

APIzations have at most one parameter. We observed this

situation both in the 135 APIs used for extracting the patterns

and the 200 APIs used to evaluate APIZATOR (Table I). In

fact, the average number of parameters of the 135 APIs is 0.33.

The reason for that could be that code snippets often target

atomic operations that require one input only.

Column “|PH \ PA|” of Table I shows descriptive statistics

(mean, min, median, and max) of the number of missing

parameters for each API pair (when |PH| ≥ 1). Intuitively,

|PH \ PA| indicates the number of parameters in PH missing

from the corresponding PA. The value ranges from 0 to 6 with

an average of 0.77 and a median of 0.50. Among the 142
APIs with |PH| ≥ 1, 68 of them (47.88%) have zero missing

parameters (|PH \ PA| = 0).

Column “|PH ∩ PA|” of Table I indicates the number of

parameters in common between each API pair (when |PH| ≥ 1).

The value ranges from 0 to 4 with an average of 0.72 and

a median of 1.00. Among the 142 APIs with |PH| ≥ 1, 91
of them (64.08%) have at least one parameter in common

(|PH ∩ PA| ≥ 1). This indicates that APIZATOR often identifies

the same parameters that a human would identify.

Column “|PA \ PH|” of Table I shows the number of spurious

parameters for each API pair (those extracted by APIZATOR,

TABLE II
RQ3 RETURN STATEMENTS COMPARISON

Return Type Equivalent Return Type
and Statements

APIH APIA Count % Count %

void void 63 31.50 63 100.00
void not void 2 1.00 – –
not void void 72 36.00 – –
not void not void 63 31.50 52 82.54

Total 200 115

but not by the human participants). The value ranges from 0
to 5 with an average of 0.23 and a median of 0.00. Among

the 200 APIs, 166 of them (83.00%) do not have spurious

parameters (|PA \ PH| = 0). This demonstrates that APIZATOR

seldom extracts parameters that a human would not extract.

Column “Jaccard Distance (JD)” of Table I reports the

Jaccard Distance [33] between PH and PA, and it is defined

as JD (PH,PA) = |PH∩PA|
|PH∪PA| from 0 to 1. The lower the value

is, the more similar the two sets are. If PH and PA are both

empty, JD (PH,PA) returns 0.0. The values range from 0.00
to 1.00 with an average of 0.38 and a median of 0.00. These

results confirm that in most cases, humans and APIZATOR

extracted identical parameter lists. Notably, for nine parameters

APIZATOR and the humans extracted the same variables

but inferred compatible albeit different types. For example,

java.util.Collection and java.util.List, double and int. In

such cases we consider the parameters to be different.

RQ2 – In summary: APIZATOR generated 113 (56.50%)

APIs with identical parameter lists to the human-produced

ones.

D. RQ3: Return Statements

Table II breaks down the 200 APIs pairs by return types

(void and not void). Column “Equivalent Return Type and

Statements” counts the number and percentage of APIs with

equivalent return statements. A pair of APIs 〈APIH,APIA〉 has

equivalent return statements if (i) both APIs have void as return

type; or (ii) both APIs return the same type and have identical

return statements in the method body. 115 (57.50%) of the 200
APIs pairs have equivalent return statements. This indicates

that APIZATOR can effectively identify the return type and

statements that a human would identify.

When both the human and APIZATOR added a return

statement (row not void, not void in Table II), 82.54% of

times they used the same type and return statements. This

indicates that the conservative nature of our algorithm leads to

few spurious return statements.

RQ3 – In summary: APIZATOR generated 115 (57.50%)

APIs with identical return statements to the human-

produced ones.

550

E. Discussion

Our experimental results are both promising and encouraging.

Indeed, for 163 (81.50%) APIs generated by APIZATOR, either

the return statements or method parameters were the same as

those produced by the developers. Note that a SO code snippet

could have more than one plausible API. Some of the APIs

obtained by APIZATOR could be plausible albeit different from

the manually-produced ones. Thus, our experimental setup only

under-approximates the effectiveness of APIZATOR.

Comparing APIzation efforts. The average APIzation time

for the participants ranges from 17 s to 15min and 58 s, with

an average of 4min and 22 s, and a median of 3min and 22 s.
Note that the participants performed the task offline without

our supervision. As such, we cannot tell if a participant was

distracted during the experiment. However, these values give

an idea of the order of magnitude of the manual effort required.

Regarding the 200 code snippets of this experiment, the average

execution time of Algorithm 1 was ≈8 s for each code snippet.

This shows the potential usefulness of APIZATOR in reducing

software development costs. Considering that developers re-use

code from SO several times in one day [2], APIZATOR could

help speed up the software development process.

False negatives due to literals as parameters. We investigated

why some pairs of APIs were different, identifying one main

reason (39 cases): literals-as-parameters, when strings and
number literals in the arguments of method calls become
parameters.

For example, consider the APIzation in https://apization.

netlify.app/evaluation/comparison/8192887/. Both the hu-

man and APIZATOR extracted list as parameter, but

the human also extracted the String literal bea from

string.matches("(?i)(bea).*").

APIZATOR adopts a conservative approach that tolerates

missing parameters but minimizes spurious ones, as the results

of RQ2 demonstrate. We could have designed APIZATOR to

extract all strings and number literals in the method body.

Although this would yield fewer false negatives, it would

also lead to more spurious parameters since not all string and

number literals should become parameters.

We believe that it is better to have false negatives rather than

false positives when extracting parameters. This is because

extracting literals from the method body “removes” information,

which has to be recovered from the SO code snippet. For

example, consider the code snippet in Fig. 2 (top). APIZATOR

does not extract the string-literal MD5 as a parameter. Indeed,

any random string yields incorrect code. If MD5 was extracted,

the user would need to recover the missing value MD5 from

the SO code snippet. Correctly recognizing and handling the

literal-as-parameter issue is an important future work as it will

drastically reduce the false negatives of APIZATOR.

Maintainability of the APIs. Currently, APIZATOR returns

a dedicated class for each generated APIs. The end users are

free to import the class as it is or copy and paste the method

and import declarations inside their codebases. Indeed, having

many one-method classes results in less cohesive software

and ultimately negatively impacts the system’s quality. An

essential future work would be to propose a technique to

group semantically related APIZATOR-generated APIs into the

same JAVA class. For instance, one could group APIs that

import the same classes and take as input the same type of

parameters (e.g., strings, lists, arrays). This will lead to a library

of APIZATOR-generated APIs more similar to a manually-

written API, facilitating the search, use, and maintainability of

APIs automatically extracted from SO.

F. Threats to Validity

Threats to internal validity. A possible threat to internal

validity is the choice of the 200 code snippets for the evaluation.

They might not be a representative sample of code snippets.

We tried to mitigate such a risk by selecting a reasonably

large number of snippets for an evaluation involving human

participants. Furthermore, by selecting popular code snippets,

i.e., based on the views count, we ensured that we selected a

relevant sample.

Threats to external validity. A possible threat to external

validity is that the four patterns are specific to JAVA, and

might not generalize well for other programming languages.

For instance, in the case of dynamically-typed languages like

PYTHON, the APIzation is easier for some aspects but harder

for others. On the one hand, it is difficult to identify possible

parameters and return statements by relying on the types of

literals. On the other hand, the flexibility of dynamic types

allows extracting parameters easier than a statically-typed

language like JAVA. Repeating our study for dynamically-typed

languages is an important future work.

Another threat to the external validity is that currently

APIZATOR only handles two types of compilation errors:

missing type declarations and missing variable declarations.

APIZATOR cannot produce APIs for those code snippets that

have other types of compilation errors. However, these two

types are among the most common compilation errors in SO

code snippets [5]. APIZATOR relies on previous techniques

(CSNIPPEX [5] and BAKER [28]) to fix compilation errors.

In the future, APIZATOR could rely on other techniques to

handle additional types of compilation error. For instance,

a common compilation error in SO code snippets is com-

piler.err.expected [5], which means the code does not comply

with the syntax rules of the JAVA language. Examples of such

rules are: “a semicolon should be at the end of every statement,

or there should be a matching sequence of opening and closing

brackets.” APIZATOR could rely on a parser that recognizes

and fixes such errors.

Threats to construct validity. A possible threat to construct

validity relates to the metrics that we used to evaluate

APIZATOR. We measured the effectiveness of APIZATOR by

counting how many times APIZATOR and the humans made

the same APIzation choices. However, a SO code snippet

could have more than one plausible API. Additional human

evaluators could help recognize when APIZATOR generated a

plausible API, albeit different from the human-produced one.

551

Nevertheless, we preferred to rely on a objective method, even

if it might have resulted in a disadvantage for APIZATOR, but

is not biased by a subjective evaluation.

VI. RELATED WORK

StackOverflow (SO) provides an important source of crowd-

generated data that inspired and powered many techniques

and tools. In a recent systematic mapping study, Meldrum

et al. identified 266 research papers that rely on SO data to

accomplish various software engineering taks [4]. It includes

topics like program repair [34], mobile development issues [35],

[36], [37], [38], APIs misuses and issues [19], [39], [40], [41],

and technology landscape discovery [42], [43]. In this paper,

we propose APIZATOR to facilitate the reuse and analysis of

SO code snippets by transforming them into compilable and

reusable APIs. To the best of our knowledge, it is the first

attempt to accomplish this. In the following, we discuss the

most related work in code snippet analysis, search, and reuse.

Code snippet analysis. Recently, Terragni et al. proposed

CSNIPPEX to resolve compilation errors of SO code snip-

pets [5]. APIZATOR leverages this tool to resolve type declara-

tion errors. Subramanian and Holmes studied the compilability

of SO code snippets [6]. However, in the case of missing

method declarations, these approaches simply wrap the code

snippets in a synthetic method. Differently from APIZATOR,

they do not aim at identifying the method parameters and return

statements of code snippets.

Researchers have proposed to mine intent-snippet pairs for

code summarization or search [44], [45], [46], [7], [47], [24].

The intent of the snippet is often characterized by the SO

question title [24]. These techniques analyze the code snippets

to identify which lines of code are related to the SO title while

filtering out all the implementation details. APIZATOR has the

opposite goal of generating the missing implementation details

to make the code snippet easy to invoke. All of these techniques

aim at identifying the lines of code associated with the intent

and do not aim to generate a proper method declaration for

the extracted lines of code. APIZATOR could work in synergy

with these techniques by creating an API for the code extracted

by these techniques.

Code snippet search. There is also a large body of work on

improving code search in on-line resources (such as SO) [27],

[48], [49]. A popular approach to facilitate search of SO code

is to reduce the context switching from IDES (e.g., INTELLIJ

IDEA and ECLIPSE) to web browsers by incorporating SO

code search into IDES. PROMPTER [50] and SEAHAWK [51]

recommend SO posts into the IDE based on source code

context found in the IDE. T2API [52], NLP2CODE [53],

and RACK [54] recommend code snippets extracted from SO

based on natural language text describing the programming task.

RACK leverages crowd-source knowledge taken from both SO

and GITHUB. STACKINTHEFLOW [55] improves the previous

approaches by monitoring the behavior of the developers to

personalize the retrieved posts. All of these techniques aim

to improve the code search or reduce the context switching

from IDES to browsers. Differently from APIZATOR, they do

not help developers to integrate the SO code snippet into their

code base. APIZATOR complements such approaches, as it

could extract, compile and create APIs for the code snippets

that are retrieved by these techniques.

Code snippet reuse. Zhang et al. [19] proposed EXAM-

PLESTACK, a GOOGLE CHROME extension that highlights

in a SO page the statements that were changed when a GH

developer previously reused the same code snippet. Such

highlights help developers to adapt the code snippet in their

code bases. To know which statements should be highlighted,

EXAMPLESTACK queries an archive of SO code reuses in GH

projects. Zhang et al. built such an archive by analyzing 200
code reuses across SO code snippets and GH projects. Simi-

larly to APIZATOR, EXAMPLESTACK aims at facilitating the

adaptation of code snippets, but with completely different goals.

First, EXAMPLESTACK suggests general code changes [19].

Differently from APIZATOR, it does not automatically extract

method parameters and return statements, and it does not

aim to generate compilable APIs. Second, EXAMPLESTACK

can suggest changes for only those code snippets present in

the precomputed archive. Conversely, APIZATOR does not

require any prior knowledge on the code snippet under analysis.

Third, the input of EXAMPLESTACK and APIZATOR differs

substantially. EXAMPLESTACK analyzes parsable code snippets

with a well-defined method declaration [19], or by wrapping the

snippets with synthetic method headers [6]. Instead, APIZATOR

analyzes incomplete code snippets.

VII. CONCLUSION AND FUTURE WORK

Online developers forums like StackOverflow (SO) have

drastically changed how developers write code [13], [56], [57],

[1], [2], [3]. Developers constantly visit SO for finding solutions

to programming tasks. The SO revolution has been recognized

by the software engineering community and several techniques

have been proposed to facilitate the reuse and analysis of SO

code snippets [27], [48], [49].

In this paper, we presented APIZATOR, an approach that

transforms SO code snippets into compilable and reusable APIs.

To the best of our knowledge, this is new to SO code snippet

analysis. Our empirical results demonstrate the usefulness of

APIZATOR in reducing the developers’ effort and enabling the

creation of a large dataset of APIs from SO.

There are several possible future works, and we highlight

the three most promising ones. First, address the literal-as-

parameter issue by employing machine learning to recognize

which literal should become a parameter. Second, investigate

state-of-the-art approaches [58], [59], [60], [26] to generate

semantically meaningful method names. In particular, in our

case, one could generate method names by relying on both the

natural language free text in the SO posts (e.g., the discussions

and comments) and the code snippet itself. Third, explore text

summarization and code comment generation approaches [61],

[46], [62], [63] to generate the JAVADOC.

552

REFERENCES

[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
Centric Programming: Integrating Web Search into the Development
Environment,” in SIGCHI Conference on Human Factors in Computing
Systems (CHI), 2010, pp. 513–522.

[2] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The (R)Evolution of Social Media in Software Engineering,” in Future
of Software Engineering (FoSE), 2014.

[3] K. Mao, L. Capra, M. Harman, and Y. Jia, “A Survey of the Use
of Crowdsourcing in Software Engineering,” Journal of Systems and
Software (JSS), vol. 126, pp. 57–84, 2017.

[4] S. Meldrum, S. A. Licorish, and B. T. R. Savarimuthu, “Crowdsourced
Knowledge on Stack Overflow: A Systematic Mapping Study,” in
International Conference on Evaluation and Assessment in Software
Engineering (EASE), 2017, pp. 180–185.

[5] V. Terragni, Y. Liu, and S.-C. Cheung, “CSNIPPEX: Automated Synthesis
of Compilable Code Snippets from Q&A Sites,” in ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2016, pp. 118–129.

[6] S. Subramanian and R. Holmes, “Making Sense of Online Code Snippets,”
in IEEE Working Conference on Mining Software Repositories (MSR),
2013, pp. 85–88.

[7] D. Yang, A. Hussain, and C. V. Lopes, “From Query to Usable Code: An
Analysis of Stack Overflow Code Snippets,” in IEEE Working Conference
on Mining Software Repositories (MSR), 2016, pp. 391–402.

[8] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What Makes a Good
Code Example?: A Study of Programming Q&A in StackOverflow,” in
IEEE International Conference on Software Maintenance (ICSM), 2012,
pp. 25–34.

[9] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, and
T. N. Nguyen, “Statistical Learning of API Fully Qualified Names in Code
Snippets of Online Forums,” in IEEE/ACM International Conference on
Software Engineering (ICSE), 2018, pp. 632–642.

[10] C. Treude and M. P. Robillard, “Understanding Stack Overflow Code
Fragments,” in IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2017, pp. 509–513.

[11] R. Holmes and R. J. Walker, “Systematizing Pragmatic Software Reuse,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
2012.

[12] V. Terragni and P. Salza. (2021) APIzation: Generating Reusable APIs
from StackOverflow Code Snippets - Replication Package. [Online].
Available: https://doi.org/10.5281/zenodo.5236305

[13] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov, “How Social
Q&A Sites Are Changing Knowledge Sharing in Open Source Software
Communities,” in ACM Conference on Computer Supported Cooperative
Work & Social Computing (CSCW), 2014, pp. 342–354.

[14] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton,
“Improving Low Quality Stack Overflow Post Detection,” in IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2014, pp. 541–544.

[15] M. Gharehyazie, B. Ray, and V. Filkov, “Some from Here, Some
from There: Cross-Project Code Reuse in GitHub,” in IEEE Working
Conference on Mining Software Repositories (MSR), 2017, pp. 291–301.

[16] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and GitHub:
Associations Between Software Development and Crowdsourced Knowl-
edge,” in International Conference on Social Computing (SocialCom),
2013, pp. 188–195.

[17] A. S. Badashian, A. Esteki, A. Gholipour, A. Hindle, and E. Stroulia,
“Involvement, Contribution and Influence in GitHub and Stack Overflow,”
in Conference of the Center for Advanced Studies on Collaborative
Research (CASCON), 2014, pp. 19–33.

[18] S. Baltes, R. Kiefer, and S. Diehl, “Attribution Required: Stack Over-
flow Code Snippets in GitHub Projects,” in IEEE/ACM International
Conference on Software Engineering (ICSE), 2017, pp. 161–163.

[19] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
Code Examples on an Online Q&A Forum Reliable? A Study of API
Misuse on Stack Overflow,” in IEEE/ACM International Conference on
Software Engineering (ICSE), 2018, pp. 886–896.

[20] S. Baltes and S. Diehl, “Usage and Attribution of Stack Overflow Code
Snippets in GitHub Projects,” Empirical Software Engineering (EMSE),
vol. 24, no. 3, pp. 1259–1295, 2019.

[21] Google. (2020) Google BigQuery. [Online]. Available: https://cloud.
google.com/bigquery

[22] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source Code,”
IEEE Transactions on Software Engineering (TSE), vol. 28, no. 7, pp.
654–670, 2002.

[23] J. M. Corbin and A. Strauss, “Grounded Theory Research: Procedures,
Canons, and Evaluative Criteria,” Qualitative Sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[24] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig, “Learning to
Mine Aligned Code and Natural Language Pairs from Stack Overflow,”
in IEEE Working Conference on Mining Software Repositories (MSR),
2018, pp. 476–486.

[25] Explosion. (2020) spaCy. [Online]. Available: https://spacy.io

[26] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A Neural
Model for Method Name Generation from Functional Description,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, Feb. 2019, pp. 414–421.

[27] A. Mishne, S. Shoham, and E. Yahav, “Typestate-Based Semantic Code
Search Over Partial Programs,” in ACM International Conference on
Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2012, pp. 997–1016.

[28] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API Documenta-
tion,” in IEEE/ACM International Conference on Software Engineering
(ICSE), 2014, pp. 643–652.

[29] T. I. Archive. (2019) StackOverflow 2019 Dump. [Online]. Available:
https://archive.org/details/stackexchange

[30] F. Rodriguez. (2020) Maven Repository. [Online]. Available: https:
//mvnrepository.com

[31] C. Treude, O. Barzilay, and M.-A. Storey, “How Do Programmers Ask
and Answer Questions on the Web?” in International Conference on
Software Engineering, New Ideas and Emerging Results (ICSE-NIER),
2011, pp. 804–807.

[32] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-Grained and Accurate Source Code Differencing,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2014, pp. 313–324.

[33] H. Small, “Co-Citation in the Scientific Literature: A New Measure of
the Relationship Between Two Documents,” Journal of the American
Society for information Science, vol. 24, no. 4, pp. 264–269, 1973.

[34] X. Liu and H. Zhong, “Mining StackOverflow for Program Repair,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2018, pp. 118–129.

[35] M. L. Vásquez, B. Dit, and D. Poshyvanyk, “An Exploratory Analysis
of Mobile Development Issues Using Stack Overflow,” in IEEE Working
Conference on Mining Software Repositories (MSR), 2013, pp. 93–96.

[36] C. Rosen and E. Shihab, “What Are Mobile Developers Asking About?
A Large Scale Study Using Stack Overflow,” Empirical Software
Engineering (EMSE), vol. 21, no. 3, pp. 1192–1223, 2016.

[37] S. Beyer and M. Pinzger, “A Manual Categorization of Android
App Development Issues on Stack Overflow,” in IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2014, pp.
531–535.

[38] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. T. Devanbu, and V. Filkov,
“Using and Asking: APIs Used in the Android Market and Asked About
in StackOverflow,” in International Conference on Social Informatics
(SocInfo), 2013, pp. 405–418.

[39] W. Wang, H. Malik, and M. W. Godfrey, “Recommending Posts
Concerning API Issues in Developer Q&A Sites,” in IEEE Working
Conference on Mining Software Repositories (MSR), 2015, pp. 224–234.

[40] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Classifying Stack Overflow Posts on API Issues,” in IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 244–254.

[41] M. L. Vásquez, G. Bavota, M. D. Penta, R. Oliveto, and D. Poshyvanyk,
“How Do API Changes Trigger Stack Overflow Discussions? A Study on
the Android SDK,” in IEEE/ACM International Conference on Program
Comprehension (ICPC), 2014, pp. 83–94.

[42] C. Chen, Z. Xing, and L. Han, “TechLand: Assisting Technology Land-
scape Inquiries with Insights from Stack Overflow,” in IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016, pp.
356–366.

[43] C. Chen and Z. Xing, “Mining Technology Landscape from Stack
Overflow,” in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2016, pp. 14:1–14:10.

553

[44] Z. Yao, D. S. Weld, W.-P. Chen, and H. Sun, “StaQC: A Systematically
Mined Question-Code Dataset from Stack Overflow,” in World Wide Web
Conference (WWW), 2018, pp. 1693–1703.

[45] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
Source Code Using a Neural Attention Model,” in Annual Meeting
of the Association for Computational Linguistics, 2016, pp. 2073–2083.

[46] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining Question and
Answer Sites for Automatic Comment Generation,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2013, pp. 562–567.

[47] A. Zagalsky, O. Barzilay, and A. Yehudai, “Example Overflow: Using
Social Media for Code Recommendation,” in International Workshop on
Recommendation Systems for Software Engineering (RSSE), 2012, pp.
38–42.

[48] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications,” IEEE Transactions on Software Engineering (TSE), vol. 38,
no. 5, pp. 1069–1087, 2012.

[49] C. McMillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,
“Portfolio: Searching for Relevant Functions and Their Usages in Millions
of Lines of Code,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 22, no. 4, pp. 37:1–37:30, 2013.

[50] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Mining
Stackoverflow to Turn the IDE into a Self-Confident Programming
Prompter,” in IEEE Working Conference on Mining Software Repositories
(MSR), 2014, pp. 102–111.

[51] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack Overflow
in the IDE,” in IEEE/ACM International Conference on Software
Engineering (ICSE), 2013, pp. 1295–1298.

[52] T. V. Nguyen, P. C. Rigby, A. T. Nguyen, M. Karanfil, and T. N. Nguyen,
“T2API: Synthesizing API Code Usage Templates from English Texts with
Statistical Translation,” in ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2016, pp. 1013–1017.

[53] B. A. Campbell and C. Treude, “NLP2Code: Code Snippet Content

Assist Via Natural Language Tasks,” in IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2017, pp. 628–632.

[54] M. M. Rahman, C. K. Roy, and D. Lo, “RACK: Code Search in the
IDE Using Crowdsourced Knowledge,” in IEEE/ACM International
Conference on Software Engineering (ICSE), 2017, pp. 51–54.

[55] C. Greco, T. Haden, and K. Damevski, “StackInTheFlow: Behavior-
Driven Recommendation System for Stack Overflow Posts,” in IEEE/ACM
International Conference on Software Engineering (ICSE), 2018, pp. 5–8.

[56] R. Abdalkareem, E. Shihab, and J. Rilling, “What Do Developers Use
the Crowd for? A Study Using Stack Overflow,” IEEE Software, vol. 34,
no. 2, pp. 53–60, 2017.

[57] D. Ye, Z. Xing, and N. Kapre, “The Structure and Dynamics of
Knowledge Network in Domain-Specific Q&A Sites: A Case Study
of Stack Overflow,” Empirical Software Engineering (EMSE), vol. 22,
no. 1, pp. 375–406, 2017.

[58] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting Natural
Method Names to Check Name Consistencies,” in IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE), 2020, pp. 1372–1384.

[59] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to Spot and Refactor Inconsistent Method
Names,” in IEEE/ACM International Conference on Software Engineering
(ICSE), 2019, pp. 1–12.

[60] Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating Question
Titles for Stack Overflow from Mined Code Snippets,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp.
1–37, 2020.

[61] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching Documents
with Examples: A Corpus Mining Approach,” ACM Transactions on
Information Systems (TSE), vol. 31, no. 1, pp. 1:1–1:27, Jan. 2013.

[62] C. Treude and M. P. Robillard, “Augmenting API Documentation with
Insights from Stack Overflow,” in IEEE/ACM International Conference
on Software Engineering (ICSE), 2016, pp. 392–403.

[63] C. Parnin and C. Treude, “Measuring API Documentation on the Web,” in
International Workshop on Web 2.0 for Software Engineering (Web2SE),
2011.

554

