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ABSTRACT

Comprehending the degree to which software components sup-

port testing is important to accurately schedule testing activities,

train developers, and plan effective refactoring actions. Software

testability estimates such property by relating code characteristics

to the test effort. The main studies of testability reported in the

literature investigate the relation between class metrics and test

effort in terms of the size and complexity of the associated test

suites. They report a moderate correlation of some class metrics to

test-effort metrics, but suffer from two main limitations: (i) the re-

sults hardly generalize due to the small empirical evidence (datasets

with no more than eight software projects); and (ii) mostly ignore

the quality of the tests. However, considering the quality of the

tests is important. Indeed, a class may have a low test effort because

the associated tests are of poor quality, and not because the class

is easier to test. In this paper, we propose an approach to measure

testability that normalizes the test effort with respect to the test

quality, which we quantify in terms of code coverage and mutation

score. We present the results of a set of experiments on a dataset

of 9,861 Java classes, belonging to 1,186 open source projects, with
around 1.5 million of lines of code overall. The results confirm that

normalizing the test effort with respect to the test quality largely

improves the correlation between class metrics and the test effort.

Better correlations result in better prediction power and thus better

prediction of the test effort.
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1 INTRODUCTION

Software testing is an essential, labor-intensive and time-consuming

activity of the software life cycle. Making testing easier is important

for many software companies, as it lowers development costs while

increasing the number of detected faults.

It is well understood that the effort of testing software systems

depends on the artifacts under test, meaning that some software

systems are easier to test than others [13, 22, 54]. Comprehending

the relation between software artifacts and test effort is extremely

important to control the cost of testing and improve the accuracy of

test plans. Software Testability [22] captures the impact of software

artifacts on testing by estimating the degree to which a software

system or component under test supports its own testing1. A software

system with a high degree of testability results in a low test effort.

In their recent comprehensive literature review of 208 papers

on software testability, Garousi et al. [22] observe that measuring

and predicting the testability is the topic that received the most

attention [2–4, 12, 13, 51]. The general idea is to measure (predict)

the test effort of software systems from structural metrics of the

software that are available before designing the test cases [51].

Early predicting the test effort can help developers to (i) early iden-

tify software components that require more test effort, on which

developers have to focus to ensure software quality, (ii) plan test-

ing activities and optimally allocate resources, and (iii) recognize

refactoring opportunities to reduce the test effort.

Most studies on measuring and predicting testability investigate

on the relation between class-level metrics in object oriented sys-

tems, for instance Chidamber and Kemerer (C&K) [14], and the cost

of writing test cases (the test effort) [2–4, 12, 13, 51]. These studies

approximate the test effort with the size and complexity of the test

suites, for instance the number of tests and assertions in the test

class associated to the class under test. They provide some evidence

of the existence of a correlation between the class-level metrics and

the test effort, but suffer from two limitations: (i) the data sets are

of small size, and (ii) mostly ignore the quality of the test suites.

Small sample size. Previous studies involved at most eight soft-

ware projects [22]. Such a small number of analyzed projects does

not guarantee the generalizability of the results: specific develop-

ment styles, frameworks, and practices can influence the correlation

results and produce different results for different projects [3].

Ignoring the test quality. Previous studies measured the test ef-

fort in terms of the size of the test classes, while mostly ignoring

1The literature proposes many definitions of software testability [22]. In this paper,
we refer to both the IEEE 610.12-1990 and ISO/IEC 9126 standards [54] that define
testability in similar ways: IEEE: “the degree to which a system or a component facilitates
the establishment of test criteria and the performance of tests to determine whether those
criteria have been met.” ISO :“attributes of software that bear on the effort needed to
validate the software product.”
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the quality of the tests. Lacking a quality assessment of the tests

leads to imprecise correlation results: classes with comparable test

effort but different test quality should not have the same degree of

testability. A class may have a low test effort because the associated

tests are of poor quality and not because the class is easier to test.

Bruntink and van Deursen’s study is the only work that acknowl-

edges the test quality when comparing with the test effort [13].

They ensured that the analyzed software systems had test suites of

similar quality, measured in terms of line coverage. However, their

correlation study involves only five software systems [13].

In this paper, we propose a new approach to measure the testabil-

ity of object-oriented classes. Our approach normalizes the test effort

of a class with respect to the quality of its tests, which we quantify

with code coverage and mutation score. This enables the correla-

tion analyses and prediction models of an arbitrary large number

of heterogeneous software systems, implemented with different

test-quality criteria.

We empirically investigated our approach with 28 metrics to

characterize the class properties, six metrics to measure the test

effort, and three metrics to quantify the test quality. We analyzed

9,861 pairs of Java classes and corresponding JUnit test classes

collected from 1,186 open source projects on GitHub.We computed

the Spearman’s correlation coefficient (𝜌) [27] for all 168 pair-wise
combinations of class and test-effort metrics, before and after the

normalization with the test-quality metrics.

The results confirm that some class metrics correlates with test-

effort metrics, and indicate that normalizing test-effort metrics

with test-quality metrics drastically improves the correlation (up to

74 %). Better correlation leads to better prediction power, and thus

better prediction of test effort [51]. On the one hand, we use the

test-quality metrics to normalize the test effort for the correlation

analysis, allowing to fairly compare classes belonging to projects of

different test qualities. On the other hand, the test-quality metrics

can also be used as a target variable for prediction purposes. Indeed,

if the purpose is to predict the test effort before writing the tests,

a target value for test quality can be used in a preprocessing step

to normalize the dataset used for training a prediction model. For

instance, one might want to predict the test effort required to write

tests having a target mutation score of 80 %. The data used to train

the model can be normalized according to that value, to build a

model that predicts the test effort for the targeted mutation score.

Our empirical study concludes that (i) normalizing test-effort

metrics by mutation score achieves the best correlation improve-

ment, and (ii) the object-oriented design properties that most influ-

ence testability are: size, complexity, coupling, and cohesion.

This paper contributes to a better comprehension of software

testability by:

• presenting the by-far largest study on the correlation of class

and test-effort metrics in terms of analyzed metrics, classes

and projects;

• extending the testability measurements by normalizing the

test effort, with respect to the quality of the test suites;

• showing that the proposed normalization improves the cor-

relation between class metrics and test effort.

• giving important insights on software testability that confirm

some of the findings of previous studies as well as uncover

previously unknown correlations between object-oriented

design properties and test effort;

• publicly releasing our dataset for further studies2.

The paper is organized as follows. Section 2 presents the objective

of this study, introduces the considered metrics, and motivates

and explains our normalization procedure. Section 3 presents the

results, which address the main research questions that validate the

hypothesis that “normalizing by the test quality” achieves better

correlation than not using the normalization. Section 4 discusses

the related work. Section 5 summarizes the main results presented

in the paper.

2 OBJECTIVE AND METHODOLOGY

This paper investigates the relationships between the object-oriented

metrics of classes and the test effort of designing unit test cases

for such classes. We produced statistically significant and general

results for Java software systems, by conducting an experimental

study on a large set of heterogeneous Java software systems of

different size and category. Because heterogeneous projects are

likely to have different test-quality criteria, we introduce a novel

normalization procedure that homogenizes the values of test-effort

metrics according to the values of test-quality metrics.

This section contextualizes the scope of the study (Section 2.1),

presents the considered metrics of class, test effort and test quality

(Section 2.2, Section 2.3, and Section 2.4, respectively), and intro-

duces the new normalization procedure (Section 2.5).

2.1 Testability of Object-Oriented Programs

We target systems designed with the Object Oriented (OO) pro-

gramming paradigm [45], which is based on the concept of “objects”

(instances of classes) that can contain both data (object fields) and

code (methods). In particular, we consider systems written in the

Java language.

Testing OO programs is often performed at three different lev-

els [55]: unit, integration, and system. Unit testing tests in isolation

small portions of programs called units, for instance methods or

classes. The goal of unit testing is to isolate each part of the program

and show that individual parts are correct. Integration testing tests

the interaction of multiple units. System testing tests a complete

and integrated software system.

When dealing with software testability, unit testing is the most

useful testing level because one can apply testability analysis early

in the development life-cycle [13]. In line with the work presented

in the literature [22], we study software testability at unit level,

and more specifically at class level.

Working at class level testing has two practical advantages. First,

we can leverage several OO metrics defined at class level [5, 14, 47].

Second, we can take advantage of popular naming conventions to

identify the test class associated with a given class [13]. In fact,

a common software development practice in OO programming

languages, such as Java, is to create a dedicated class for each

tested class following well-defined naming conventions [21, 39].

2The dataset and source code for the analysis we performed in this paper are shared
at the address https://doi.org/10.5281/zenodo.3740499.
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Table 1: Class metrics

Design Property Name Description Reference

Size Lines of Code (LOC) Number of non-blank lines including comments and JavaDoc –

Number of Bytecode Instructions (NBI) Number of bytecode instructions in the compiled .class file –

Lines of Comment (LOCCOM) Number of lines of comment, excluding any end-of-line comments –

Number of Public Methods (NPM) Number of methods in a class that are declared public Goyal and Joshi [23]

Number of STAtic Method (NSTAM) Number of methods in a class that are declared static –

Number of Fields (NOF) Number of fields (attributes) in the class –

Number of STAtic Fields (NSTAF) Number of static fields (attributes) in the class –

Number of Method Calls (NMC) Number of method invocations –

Number of Method Calls Internal (NMCI) Number of method invocations of methods defined in the class –

Number of Method Calls External (NMCE) Number of method invocations of methods defined in other classes –

Complexity Weighted Methods per Class (WMC) Sum of the Cyclomatic Complexity [38] of all methods in the class Chidamber and Kemerer [14]

Average Method Complexity (AMC) Average of the Cyclomatic Complexity [38] of all methods in the class Tang, Kao and Chen [47]

Response For a Class (RFC) Number of methods that response to a message from the class itself Chidamber and Kemerer [14]

Inheritance Depth of Inheritance Tree (DIT) Number of super classes Chidamber and Kemerer [14]

Number of Children (NOC) Number of immediate sub-classes subordinated to a class in the class hierarchy Chidamber and Kemerer [14]

Measure of Functional Abstraction (MFA) Ratio of the number of methods inherited by the class to the number of methods Goyal and Joshi [23]

Coupling Coupling Between Object classes (CBO) Number of other classes that a class is coupled to Chidamber and Kemerer [14]

Inheritance Coupling (IC) Number of parent classes to which a given class is coupled Tang, Kao and Chen [47]

Coupling Between Methods (CBM) Number of redefined methods to which all the inherited methods are coupled Tang, Kao and Chen [47]

Afferent Coupling (Ca) Measure of how many other classes use the specific class Martin [36]

Efferent Coupling (Ce) Measure of how many other classes is used by the specific class Martin [36]

Cohesion Lack of Cohesion in Methods (LCOM) Diff. between the number of method pairs without and with common variables Chidamber and Kemerer [14]

Lack of Cohesion Of Methods (LCOM3) Revised version of LCOM Henderson-Sellers [28]

Cohesion Among Methods in class (CAM) Represents the relatedness among methods of a class Goyal and Joshi [23]

Encapsulation Data Access Metrics (DAM) Ratio of the number of private fields to the total number of fields Goyal and Joshi [23]

Number of PRIvate Fields (NPRIF) Number of private fields (attributes) of the class –

Number of PRIvate Methods (NPRIM) Number of private methods of the class –

Number of PROtected Methods (NPROM) Number of protected methods of the class –

2.2 Class Metrics

Table 1 shows the 28 class metrics that we considered in this study.

We tried to be as inclusive as possible when selecting the metrics,

and avoided to limit the selection to metrics known to be corre-

lated with testability [22]. This is because we also aimed to find

unknown correlations that may arise with a large study. We consid-

ered well-known object oriented metrics: Chidamber and Kemerer

(C&K) [14] and the Tang, Kao and Chen (TKC) [47] metrics. We

enriched this already large set of metrics with additional metrics

that may correlate with testability. Table 1 groups the 28 metrics

based on the design property that each metric characterizes: size,

complexity, inheritance, coupling, cohesion, and encapsulation.

Size. Size metrics includes standard ones such as Lines Of Code

(LOC), metrics about the number of (static) methods and fields in the

class (Number of Public Methods (NPM), Number of STAtic Method

(NSTAM), Number of Fields (NOF), and Number of STAtic Fields

(NSTAF)) and metrics about the number of internal and external

method calls (Number of Method Calls (NMC), Number of Method

Calls Internal (NMCI), Number of Method Calls External (NMCE)).

In this paper we propose Number of Bytecode Instructions (NBI) as

a new metric defined as the number of bytecode instructions in the

compiled .class file. NBI can be more informative than the classic

LOC metric, because single lines of code in Java can correspond to

simple statements (for instance, the variable assignment) or complex

statements (such as the lambda expressions), which correspond to

few or many numbers of bytecode instructions, respectively. Thus,

the NBI metrics distinguishes classes with a similar number of LOCs

but with different types of statements (complex and simple).

Complexity. Complexity metrics include Weighted Methods per

Class (WMC) and Average Method Complexity (AMC). Both met-

rics depend on the cyclomatic complexity metric [38], which is its

number of the linearly-independent paths of a method [38]. Be-

cause the cyclomatic complexity is defined at the method level,

WMC [14] and AMC [47] convert it to class-level by summing and

averaging the cyclomatic complexities of all methods in the class,

respectively.

Inheritance. Inheritance metrics capture the different aspects of

the inheritance of a class. Depth of Inheritance Tree (DIT) is the

number of super-classes, Number of Children (NOC) is the number

of immediate sub-classes in the class hierarchy, and Measure of

Functional Abstraction (MFA) is the ratio of the number of methods

inherited by the class to the total number of methods in the class.

Coupling. Coupling metrics characterize the degree of interde-

pendence between classes and methods. Classes that have a high

(outgoing) efferent coupling use other parts of the system, increas-

ing the possible execution paths [43]. Low coupling is often a sign

of a well-structured software system and a good design.

Cohesion. Cohesion describes the binding of the elements within

one method and within one object class, respectively. Low cohesion

means that the class does a great variety of actions.

Encapsulation. Encapsulationmetrics capture the degree of encap-

sulation of the classes. For instance, the number of private methods

and fields (NPRIM and NPRIF), the ratio of the number of private

fields to the total number of fields (DAM).
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Table 2: Test-effort metrics

Name Description Reference

TEST – Lines Of Code (T-LOC) Number of non-blank lines including comments and JavaDoc of the test class Bruntink and van Deursen [13]

TEST – Number Of Tests (T-NOT) Number of test cases in the test class (methods with the @Test annotation) Bruntink and van Deursen [13]

TEST – Number Of Assertions (T-NOA) Number of test assertions in the test class (invocations to org.junit.Assert) Bruntink and van Deursen [13]

TEST – Number of Method Calls (T-NMC) Number of method invocations in the test class Toure et al. [49, 50]

TEST – Weighted Methods per Class (T-WMC) Sum of the Cyclomatic Complexity [38] of all methods in the test class Chidamber and Kemerer [14]

TEST – Average Method Complexity (T-AMC) Average of the Cyclomatic Complexity [38] of all methods in the test class Tang, Kao and Chen [47]

Table 3: Test-quality metrics of 𝑇𝐶 with respect to its associated class 𝐶

Name Description Reference

Line coverage (L) Ratio of source code lines in 𝐶 that are executed by at least one test in 𝑇𝐶 –

Branch coverage (B) Ratio of branches in 𝐶 that are executed by at least one test in 𝑇𝐶 –

Mutation score (M) Mutation score of a test suite 𝑇𝐶 with respect to a class 𝐶 is the ratio of mutants that are killed by 𝑇𝐶 De Millo et al. [20]

2.3 Test-Effort Metrics

Test-effort metrics measure the effort of testing classes in terms

of the size and complexity of the associated test cases. We refer to

test classes written in JUnit, the most popular testing framework

for Java [21, 39]. Let 𝑇𝐶 denote the JUnit test class of a class 𝐶 .
Each test method in 𝑇𝐶 includes zero or more assertion oracles

(boolean conditions) that predicate on the behavior of the class

under test, and whose runtime values determine the pass or fail

status of the test case. A test class may declare additional methods

and inner classes to support the test executions, and such test code

is called test scaffolding. Examples of scaffolding methods are those

annotated with @Before and @After.

The effort of testing a class 𝐶 is best quantified using the man-

hours required to design and implement 𝑇𝐶 [37]. However, col-

lecting such information is difficult even for a few small software

projects [37], and becomes unrealistic for many large software

projects. As such, researchers often approximate the test effort with

the size and complexity of the test class (test-effort metrics) [2, 3, 12,

13, 51], under the assumption that the size and complexity of a test

class reflect the effort for designing it.

Table 2 shows the six test-effort metrics that we use to character-

ized test effort. The first four metrics TEST - Lines Of Code (T-LOC),

TEST – Number Of Tests (T-NOT), TEST – Number Of Assertions

(T-NOA), and TEST – Number of Method Calls (T-NMC) measure

the size of the test class under different perspectives. T-LOC consid-

ers the size of the entire test class, and thus it includes scaffolding

methods and inner classes. T-LOC also considers comment lines,

since adding comments to the test code contributes to the cost of

designing test cases [2]. T-NOT indicates the number of test cases re-

gardless of their size. T-NOA is the amount of assertions contained

in the test class, which might not be the same as T-NOT, because

a test may have multiple assertions. T-NMC (called TINVOKE in

Toure et al.’s paper [51]) measures the number of method calls in

the test class, which is a proxy for the degree of dependency of

the test cases [51]. According to Toure et al., T-NMC is particularly

important to characterize the test effort of classes [50]. Intuitively,

a test class with few dependencies is easier to execute than a test

class with many dependences, because a test class with few depen-

dencies can invoke the methods under test directly [51]. TEST –

WeightedMethods per Class (T-WMC) and TEST – AverageMethod

Complexity (T-AMC) measure the cyclomatic complexity [38] of

the test class, which well quantifies the test effort. A test class may

contain test or scaffolding methods with many linearly independent

execution paths. We assume that the higher the complexity of the

test class the higher the effort required for writing and designing it.

2.4 Test-Quality Metrics

In this paper, we propose the usage of test-quality metrics to normal-

ize test-effort metrics. Table 3 shows the three test-quality metrics

that we considered: line coverage, branch coverage, and mutation

score. These metrics are commonly used to approximate the quality

of a test suite defined as the ability to reveal faults [54].

Coverage analysis [40] executes the test class 𝑇𝐶 on an in-

strumented version of the class under test 𝐶 to collect coverage

information, and computes the percentage of structural code that

𝑇𝐶 executes. Executing the faulty statements is a necessary (but

not sufficient) condition to expose software faults. Test coverage

measures the test quality in terms of executed code, which approxi-

mates the chance to execute a faulty statement (if it exists) [29]. In

our experiments, we compute statement and branch coverage, the

two most popular code coverage metrics [29].

Simply executing a faulty statement, may not lead to failure. An

effective test suite needs test oracles (test assertions) to distinguish

correct from incorrect program behaviors.Mutation analysis is a

well known alternative approach to evaluate the effectiveness of a

test suite [20]. Mutation analysis seeds artificial faults in the class

under test, producing faulty versions (called mutants). Each of these

mutant contains a single-seeded fault. Mutation analysis executes

the test suite on each mutant, and counts how many mutants the

test suite “kills”, which means that at least one test fails because

of the seeded fault. It then computes the mutation score as the

percentage of mutants killed by the test suite. Not only does the

mutation score evaluate the ability of tests to execute the seeded

faults, but also the ability of test oracles to expose such faults.

The values of the test-effort metrics range from zero to one. For

example, a line coverage of 0.5, means that a test suite 𝑇𝐶 executed

half (50 %) of the source code lines in the class under test 𝐶 .
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2.5 Normalization

In this paper we investigate the use of test-qualitymetrics as normal-

ization factors when measuring the test effort. Current testability

approaches measure the test effort by referring only on the size and

complexity of the test cases (see Table 2) [12, 13, 46, 51], mostly ig-

noring the adequacy of the tests (test quality). Focusing only on the

size and complexity of test suites without considering their quality

may be misleading. A small test suite may reflect the easiness of

designing a high-quality test suite, indeed, and thus indicate high

code testability, but may also reflect a bad quality test suite, and be

completely unrelated to the code testability.

Ignoring the quality of the test suite produces imprecise corre-

lation results, and thus imprecise prediction models if test suites

of different quality are considered. For instance, let us consider

two classes 𝐶1 and 𝐶2, and the corresponding test classes 𝑇𝐶1 and
𝑇𝐶2. Let us assume that 𝐶1 has 1,000 lines of code (LOC = 1,000),
𝑇𝐶1 has ten test cases (T-NOT = 10), and 𝑇𝐶1 covers 10 % of the

source code lines of 𝐶1 (line coverage = 0.1). Let us also assume
that 𝐶2 has LOC = 50, 𝑇𝐶2 has T-NOT = 30, and line coverage is

90 %. Approaches based solely on the size and complexity of the test

cases would indicate higher testability (the lower test effort) for𝐶1,
which requires only 10 test cases for 1,000 lines of code, than 𝐶2,
which requires 30 test cases for 50 lines of code. However, the small

size of 𝑇𝐶1 comes with very low coverage, which indicates a very

low quality of the test suite, while the relatively large size of 𝑇𝐶2
comes with very high coverage, which indicates a very high quality

of the test suite. The issue is that 𝑇𝐶1 and 𝑇𝐶2 have a considerably
different test quality (10 % and 90% line coverage), and thus it is

meaningless to compare the number of tests of 𝑇𝐶1 and 𝑇𝐶2 for
studying their correlations with class metrics.

Bruntink and van Deursen’s study is the only work that ac-

knowledges test quality when measuring test effort [13]. The study

suggests the importance of test quality, but works around the issue

by selecting subjects with test suites that achieves the same code

coverage. This approach is feasible when dealing with a small and

homogeneous set of subjects, but becomes impractical when deal-

ing with many heterogeneous subjects implemented with different

test adequacy criteria (as in our case).

We address this issue by normalizing the test effort with the test

quality. We compute both test-effort and test-quality metrics for

each test class 𝑇𝐶 , and “normalize” the test-effort of 𝑇𝐶 with the

test-quality of 𝑇𝐶 .
Our procedure normalizes the values of each test-effort metrics

for all the analyzed systems proportionally to a fixed target test-

quality. Our normalization is grounded on the intuition that test

effort grows with an increased test quality. We normalize test effort

over test quality as:

normalized test-effort value

target test-quality value
=

actual test-effort value

actual test-quality value

The target test-quality value is a fixed decimal number between

zero (excluded) and one. Intuitively, both code coverage and muta-

tion score is a decimal number within such a range. In our exper-

iment, for simplicity we consider target test-quality value to be 1

(but we could have chosen any possible value in the range (0; 1]).

For the example discussed above, with a target test-quality value

of 1, the normalized value of T-NOT with respect to line coverage is

10
0.10 = 100 for𝑇𝐶1 and

30
0.90 = 33.33 for𝑇𝐶2. After the normalization,

1,000 LOCs of 𝐶1 relates with T-NOT = 100 and 50 LOCs of 𝐶2
relates with T-NOT = 33.33, resulting in comparable values.

In the next section, we present our experiments to investigate

if such normalization procedure improves the correlation of class

metrics with respect to test effort.

3 EXPERIMENTAL RESULTS

This section describes the results of a set of experiments that evalu-

ate our proposed approach for measuring software testability. We

addressed two research questions:

RQ1 What is the correlation between class and test-effort metrics?

RQ2 Does the normalization with test-quality metrics increase cor-

relation?

3.1 Data Collection

We selected 1,186 Java open-source projects from GitHub, the

most popular platform for code hosting. We excluded low quality

and toy projects, by considering only Java projects with at least

50 stars and at least one fork. We queried GitHub to obtain the

list of public repositories that match our criteria. We implemented

an automated script that clones the latest version of the master

branch for each repository in the list, and selects all the repositories

that (i) contain at least one JUnit test class, which we identify

from an import declaration with package org.junit, and (ii) use

either Gradle or Maven as build automation systems (which we

identify from the presence of the file build.gradle or pom.xml).

(iii) build successfully with no failing tests. This is because mutation

analysis needs a “green” test suite [20]. We require either Gradle or

Maven because we need build automation systems to automatically

build the projects, collect and resolve the runtime dependencies

and run test cases. Indeed, we need compiled code to compute most

class and test-effort metrics (see Table 1 and Table 2), and we need

to execute the test cases to compute the test quality metrics (see

Table 3). Gradle and Maven are among the most popular build

automation systems for Java. We found 1,186 GitHub projects that
satisfy these three conditions.

Extracting pairs of class and test class. We automatically ex-

plored the content of each of the 1,186 projects to extract the pairs
〈𝐶,𝑇𝐶 〉, where 𝐶 is a Java class and 𝑇𝐶 is the JUnit test class asso-

ciated to 𝐶 . This is in line with the typical usage of JUnit for unit
testing that encodes the tests of a class𝐶 in a dedicated class𝑇𝐶 [51].

Following similar work that study the correlation between class and

test-effort metrics [12, 13, 24], we identified the pairs 〈𝐶,𝑇𝐶 〉 by re-
lying on the JUnit naming conventions for test classes [21, 39]. The

conventions require that the name of test class𝑇𝐶 is the name of the

associated class 𝐶 with “Test” or “TestCase” as prefix or suffix [39].

For example, if a class name is Connector, the name of its JUnit

test class should be either ConnectorTest or ConnectorTestCase.

Previous studies [12, 13, 24] indicate this as a common practice of

Java developers. With this approach, we precisely identify the pairs

〈𝐶,𝑇𝐶 〉 of the class 𝐶 and the associated test class 𝑇𝐶 [12, 13, 24].

Collecting class metrics. For each of the analyzed Java classes,

we collected the class metrics with a static analyzer that we imple-

mented on top of v2.2 of CKJM-extended [34] by Jureczko and
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Table 4: Descriptive statistics of class metrics

Metric Mean SD Min Q1 Q2 Q3 Max

LOC 161.68 226.61 8.00 60.00 99.00 177.00 6,758.00
NBI 368.64 917.82 5.00 84.00 183.00 397.00 60,250.00
LOCCOM 149.97 218.04 0.00 52.00 91.00 170.00 6,267.00
NPM 7.98 11.95 0.00 2.00 5.00 9.00 247.00
NSTAM 2.33 6.35 0.00 0.00 1.00 2.00 141.00
NOF 4.50 31.73 0.00 1.00 2.00 4.00 2,083.00
NSTAF 2.21 31.45 0.00 0.00 0.00 1.00 2,083.00
NMC 46.52 111.41 1.00 10.00 22.00 50.00 6,638.00
NMCI 16.10 46.40 0.00 2.00 6.00 16.00 2,533.00
NMCE 30.42 79.16 0.00 5.00 14.00 34.00 4,165.00
WMC 10.50 13.56 1.00 4.00 6.00 12.00 2,560.00
AMC 23.34 43.34 0.11 9.67 16.29 27.00 1,734.50
RFC 29.73 30.36 2.00 12.00 20.00 37.00 520.00
DIT 1.49 0.84 1.00 1.00 1.00 2.00 8.00

Metric Mean SD Min Q1 Q2 Q3 Max

NOC 0.03 0.33 0.00 0.00 0.00 0.00 19.00
MFA 0.21 0.33 0.00 0.00 0.00 0.48 1.00
CBO 6.72 8.17 0.00 2.00 4.00 8.00 156.00
IC 0.33 0.59 0.00 0.00 0.00 1.00 5.00
CBM 0.65 2.04 0.00 0.00 0.00 1.00 48.00
CA 0.71 4.00 0.00 0.00 0.00 1.00 151.00
CE 6.04 7.22 0.00 2.00 4.00 8.00 108.00
LCOM 104.01 755.86 0.00 1.00 6.00 30.00 31,688.00
LCOM3 0.90 0.65 0.00 0.50 0.75 1.10 2.00
CAM 0.43 0.19 0.02 0.29 0.40 0.56 1.00
DAM 0.68 0.44 0.00 0.00 1.00 1.00 1.00
NPRIF 2.74 4.32 0.00 0.00 2.00 3.00 117.00
NPRIM 1.41 3.56 0.00 0.00 0.00 1.00 95.00
NPROM 0.43 1.75 0.00 0.00 0.00 0.00 82.00

Table 5: Descriptive statistics of test-effort metrics

Metric Mean SD Min Q1 Q2 Q3 Max

T-LOC 112.83 126.18 10.00 50.00 77.00 127.00 3,013.00
T-NOT 5.01 6.98 1.00 1.00 3.00 6.00 191.00
T-NOA 9.26 23.56 0.00 0.00 3.00 9.00 784.00
T-NMC 69.91 116.68 1.00 17.00 36.00 76.00 2,377.00
T-WMC 7.27 8.90 2.00 3.00 5.00 8.00 196.00
T-AMC 34.46 43.69 1.06 15.00 24.25 40.00 1,605.69

Table 6: Descriptive statistics of test-quality metrics

Metric Mean SD Min Q1 Q2 Q3 Max

Line coverage (L) 0.78 0.26 0.00 0.67 0.88 1.00 1.00
Branch coverage (B) 0.67 0.31 0.00 0.50 0.75 1.00 1.00
Mutation score (M) 0.65 0.32 0.00 0.40 0.71 1.00 1.00

Spinellis [31], currently the most comprehensive open-source tool

to compute OO metrics for Java. CKJM-extended computes 18

of the class metrics in Table 1. We implemented additional static

analyzers to compute the remaining 11 class metrics. The static

analyzers compute the 28 class metrics (Table 1) taking in input the

source code of 𝐶 and the JARs produced with the build automation

system, which contain the compiled classes of 𝐶’s project and its
runtime dependencies. In this way we could compute both the met-

rics that require the source code of the class 𝐶 and the ones that

require the compiled binary code of the class 𝐶 .

Collecting test-effort metrics. Table 2 presents the test-effort

metrics from 𝑇𝐶 that we collected with our static analyzer that

already computes LOC, WMC, AMC and NMC. We implemented

additional static analyzers for computing the remaining test-effort

metrics: T-NOT, and T-NOA. The static analyzer computes the six

test-effort metrics by taking in input the source code of 𝑇𝐶 and the

JARs outputted by the build automation system.

Collecting test-quality metrics. We collected the test-quality

metrics (Table 3) relying on the v0.8.2 of JaCoCo [42] for the code

coverage, and the v1.4.2 of PIT [16] for the mutation score. We built

an automated script that modifies the build.gradle and pom.xml

build configuration files of each project by adding JaCoCo and PIT

dependencies. The scripts automatically invokes JaCoCo and PIT

(via Gradle v4.10 or Maven v3.5.4), which execute each test class

𝑇𝐶 individually to compute its line and branch coverage and muta-

tion score. It is worth noting that we used the default configurations

for both JaCoCo and PIT.

Dataset.We ran the tools and scripts on all the 1,186 project cloned
from GitHub. We aggregated the results by automatically parsing

the report files of the static analyzers, JaCoCo and PIT. In total, we

computed all metrics for 9,861 pairs 〈𝐶,𝑇𝐶 〉 of class𝐶 and associated

test class𝑇𝐶 . We counted an average of 8.31 pairs 〈𝐶,𝑇𝐶 〉 per project.
The 9,861𝐶 and𝑇𝐶 classes have a cumulative LOC of 1,594,309 and
1,112,652, respectively.𝑇𝐶 classes have 49,413 test cases overall and
5.01 on average.

Table 4, Table 5 and Table 6 show the descriptive statistics of the

values of the class, test-effort, and test-quality metrics in our dataset,

respectively. For each metrics, the tables show the average (column

“Mean”), standard deviation (column “SD”), minimum value (column

“Min”), first quartile (column “Q1”), second quartile (column “Q2”),

third quartile (column “Q3”) and maximum value (column “Max”).

Our dataset contains classes with a wide range of structural

and OO design properties (Table 4) and test classes with different

size and complexity (Table 5). Table 6 indicates that the 9,861 test
classes have a considerable amount of variation of the three test-

quality metrics (Standard Deviation (SD) ∼ 0.30). This confirms our
hypothesis that test quality criteria vary largely among open-source

projects, and motivates the need of our normalization adjustment,

as discussed in Section 2.5.

The median (Q2) and mean of the test-quality metrics are rela-

tively high, indicating that the projects are well-tested. Line cov-

erage, branch coverage and mutation score have a median of 0.88,
0.75 and 0.71, respectively. This may be related to the selection of
popular projects with at least 50 stars and at least one fork. Few

test classes result in zero coverage and mutations score (column

“Min” of Table 6). In these few cases, the JUnit naming convention

does not correctly pair𝐶 with𝑇𝐶 and we excluded these pairs from

our analysis.
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Figure 1: Spearman rank correlation coefficient (absolute values) – without Normalization (N).

Figure 2: Spearman rank correlation coefficient (absolute values) – test-effort metrics are normalized by Line coverage (L).

Figure 3: Spearman rank correlation coefficient (absolute values) – test-effort metrics are normalized by Branch coverage (B).

Figure 4: Spearman rank correlation coefficient (absolute values) – test-effort metrics are normalized by Mutation score (M).

3.2 RQ1 – Correlation Study

To answer RQ1, we computed the “Spearman’s correlation coeffi-

cient” (𝜌) [27] for all 168 (28 × 6) pair-wise combinations of class

and test-effort metrics. Spearman’s coefficient is a popular non-

parametric measure of correlation used in related studies [13, 51].

We opted for a non-parametric statistical measure because none

of the observed metrics (see Table 4, Table 5 and Table 6) follow a

“Gaussian” distribution. Thus, parametric measures of correlation,

for instance “Pearson”, cannot be used [27]. We checked for normal-

ity with the “D’Agostino’s K2” test [19]. Other normality tests, such

as “Shapiro-Wilk Test”, are inadequate because each of the distribu-

tions has more than 5,000 data points [44]. The 𝐾2 test calculates

the kurtosis and skewness to determine if a data distribution departs

from the normal distribution [19]. For each of the metrics’s value

distributions, the normality test leads to p-value ≤ 𝛼 (𝛼 = 0.05),
and thus we reject the hypothesis that are normal distributions.

Spearman’s coefficient (𝜌) quantifies the degree to which two

variables are associated with a monotonic function, which is an

increasing or decreasing relationship [17]. The coefficient 𝜌 ranges
from −1 to +1. A positive (negative) 𝜌 means that both variables
increase (decrease) together. A 𝜌 close to zero means that the two
variables have no correlation.

Figure 1 shows the heatmap of the Spearman’s coefficients for

each of the 168 pair-wise combinations of class and test-effort met-

rics. For this research question, we are not interested in distin-

guishing positive and negative correlations, and thus Fig. 1 reports
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absolute values |𝜌 |. The colors range from red (min correlation

|𝜌 | = 0.0) to green (max correlation |𝜌 | = 1.0).
We interpret |𝜌 | as weak (≤ 0.3), moderate (0.3 − 0.5), or

strong (≥ 0.5), following the widely accepted classification of

Cohen [15]. The column “Without Normalization (N)” in Table 7

shows the number of class metrics that have weak, moderate and

strong correlations for each test-effort metrics.

The p-value (probability value) computed for each moderate and

strong correlations is always less than 0.0001, and thus we can

reject the null hypothesis that the metrics are uncorrelated. This

result confirms those of previous studies [12, 13, 51]. Some class and

test-effort metrics have moderate correlations (39 in our dataset).

3.3 RQ2 – Normalization Effect on Correlation

To answer RQ2, we normalized each value of the test-effort metrics

with the corresponding value of a test-quality metric, using the

formula described in Section 2.5 with 1 as target test-quality value.

For example, when considering line coverage, a target test-quality

value of 1 means normalizing by 100 % line coverage. Because we

considered three test-quality metrics (see Table 3), we obtained

three variants of our original dataset. Each variant consider a dis-

tinct test-quality metric: Line coverage (L), Branch coverage (B)

andMutation score (M). For each variant, we recomputed the Spear-

man’s coefficient (|𝜌 |) for the 168 pair-wise combinations of class
and (normalized) test-effort metrics.

Figure 2, Fig. 3 and Fig. 4 show the heatmaps of |𝜌 | after each
normalization. Compared with Fig. 1, the values of |𝜌 | coefficients

drastically increase. Table 7 shows the number of weak, moderate

and strong correlations after each normalization. Normalizing by

Line of coverage (L) decreases the number of weak correlations

from 128 to 98 and increases the number of moderate and strong

correlations from 39 to 52 and from 1 to 18, respectively. Normaliz-

ing by Branch of coverage (B) achieves similar results. Normalizing

by Mutations score (M) leads to the best correlation improvement.

The number of weak correlations decreases from 128 to 83, while

the number of moderate and strong correlations increases from 39

to 51 and from 1 to 34, respectively.

To better quantify the correlation improvement we compared

the |𝜌 | coefficients before and after normalization. We started by

removing all combinations of class and test-effort metrics that char-

acterize negligible or not-existing correlations. Removing them is

important because their |𝜌 | values are “statistical fluke” [15], which
is a result obtained simply by chance, and not because there is a

correlation [15].

Recognize negligible or not-existing correlations is nontrivial

because several |𝜌 | values that are close to zero (weak) before nor-
malization become higher (moderate) after (see Table 7). As such,

we removed all combinations of class and test-effort metrics that

correspond to |𝜌 | < 0.1 both before and after normalization, which
likely represents statistical flukes [15]. Line coverage normalization

has 51 of such combinations, Branch normalization 50 andMutation

normalization 42. The p-value for such combinations confirms that

the little visible correlation is a statistical fluke. Indeed, 91 (63.63 %)
of the 143 removed combinations have a p-value > 0.0001, whereas
the p-values of all retained combinations is < 0.0001. Therefore, we

can reject the null hypothesis that the retained combinations are

uncorrelated.

For each type of normalization, we computed Δ |𝜌 | as the dif-
ference between the |𝜌 | values after and before normalization. For
example, if we consider the combination LOC and T-NOT, |𝜌 | before
normalization (|𝜌 |𝑁 ) is 0.35 and after normalization by mutation
score (|𝜌 |𝑀 ) is 0.58. Then, Δ |𝜌 | = |𝜌 |𝑀 − |𝜌 |𝑁 = 0.58 − 0.35 = 0.23.
The Line normalization retains 117 combinations. Their Δ |𝜌 | is
0.09 on average (max 0.17 and min −0.02). Only in four cases

the Spearman’s correlation decreases after normalization (Δ |𝜌 | =
|𝜌 |𝐿 − |𝜌 |𝑁 < 0). Instead, the Branch normalization retains 118

combinations. Their Δ |𝜌 | is 0.08 on average (max 0.18 and min

−0.04). The Spearman’s correlation decreases after normalization
only in nine cases. The Mutation normalization retains 126 com-

binations with an average Δ |𝜌 | of 0.13 (max 0.26 and min −0.008).
The correlation decreases after normalization only for the combina-

tion CA and T-NOA: Δ |𝜌 | = |𝜌 |𝑀 − |𝜌 |𝑁 = −0.008. The Mutation

normalization leads to the best correlation improvement among

the three normalizations, thus sustaining the intuition that the mu-

tation score captures the quality of a test suite better than code

coverage [20]. It evaluates both the ability of tests to cover the

faulty statements and the ability of test oracles to detect the failure.

3.4 Discussion of the Results

Table 8 shows the Spearman’s coefficients of the 12 class metrics

that most correlate with test effort, meaning that they have at least

one |𝜌 | value ≥ 0.4, either before or after normalization. We chose

0.4 as the threshold because it includes strong correlations and

the top half of moderate correlations [15]. Table 8 highlights the

highest |𝜌 | value for each column. All selected class metrics have a
positive correlation, except CAM that has a negative one (𝜌 < 0).

These 12 class metrics belong to four OO design properties: size,

complexity, coupling, and cohesion (see column “Design Property”

of Table 1). More specifically, seven metrics characterize the size of

the class (LOC, LOCCOM, NBI, NMC, NMCI, NMCE, NPM), two the

complexity (RFC and WMC), two the coupling (CBO and CE), and

one the cohesion (CAM). These results confirm some of the findings

of related studies [2, 3, 13, 51] and identify new correlations.

We discuss in details the similarities and differences of our find-

ings with respect to Bruntink and van Deursen’s [13] and Toure

et al.’s [51] studies, which analyze the highest number of projects

and class/test-effort metrics among the work reported in the lit-

erature. Referring to the published |𝜌 | values of these studies, we
consider a class metrics to be highly correlated to test effort if

(i) the |𝜌 | value ≥ 0.4 with respect to any test-effort metric; (ii) the
correlation results are statistical significant.

Bruntink and van Deursen [13] studied five open-source Java

programs to compute the Spearman’s correlation between nine Chi-

damber and Kemerer (C&K) metrics (DIT, NMC, LCOM, LOC, NOC,

NOF, NPM, RFC and WMC) and two test-effort metrics (T-LOC and

T-NOT). Our study confirms that NMC (FOUT in Bruntink and van

Deursen’s study), LOC (LOCC in Bruntink and vanDeursen’s study),

RFC and WMC highly correlate with both T-LOC and T-NOT.

Bruntink and van Deursen also report that NPM is highly cor-

related with T-NOT for four out of five subjects, and that LCOM

and NOF are highly correlated with T-LOC for one subject. Our
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Table 7: Counting the Spearman’s coeff. absolute values |𝜌 | as weak (|𝜌 | ≤ 0.3), moderate (0.3 < |𝜌 | < 0.5), or strong (|𝜌 | ≥ 0.5)

Test effort
Without Normalization (N) Normalized by Line coverage (L) Normalized by Branch coverage (B) Normalized by Mutation score (M)

Weak Moderate Strong Weak Moderate Strong Weak Moderate Strong Weak Moderate Strong

T-LOC 17 10 1 15 6 7 14 7 7 11 8 9

T-NOT 23 5 0 17 11 0 17 11 0 15 7 6

T-NOA 28 0 0 21 7 0 23 5 0 19 9 0

T-NMC 17 11 0 14 7 7 14 7 7 11 8 9

T-WMC 21 7 0 15 9 4 14 9 5 13 8 7

T-AMC 22 6 0 16 12 0 17 11 0 14 11 3

Total 128 39 1 98 52 18 99 50 19 83 51 34

Table 8: (Best) class metrics with at least one |𝜌 | greater than 0.4

Class
metric

T-LOC T-NOT T-NOA T_NMC T-WMC T-AMC

N L B M N L B M N L B M N L B M N L B M N L B M

LOC 0.53 0.66 0.66 0.72 0.35 0.50 0.49 0.58 0.30 0.36 0.36 0.39 0.47 0.59 0.59 0.67 0.37 0.53 0.53 0.60 0.33 0.47 0.45 0.53
LOCCOM 0.49 0.60 0.61 0.65 0.29 0.42 0.43 0.49 0.26 0.31 0.32 0.35 0.41 0.51 0.53 0.59 0.31 0.45 0.46 0.52 0.31 0.42 0.42 0.48
NBI 0.45 0.59 0.61 0.67 0.33 0.48 0.47 0.58 0.30 0.36 0.35 0.40 0.46 0.58 0.59 0.67 0.35 0.51 0.52 0.60 0.34 0.48 0.47 0.56

NMC 0.44 0.57 0.59 0.63 0.32 0.45 0.45 0.54 0.24 0.30 0.29 0.33 0.46 0.57 0.58 0.65 0.34 0.49 0.50 0.57 0.31 0.43 0.42 0.50
NMCI 0.43 0.52 0.53 0.55 0.29 0.39 0.39 0.45 0.23 0.28 0.28 0.30 0.44 0.52 0.53 0.57 0.32 0.43 0.43 0.48 0.33 0.42 0.41 0.45
NMCE 0.34 0.46 0.48 0.53 0.26 0.39 0.38 0.47 0.19 0.24 0.22 0.27 0.36 0.46 0.47 0.54 0.28 0.42 0.43 0.50 0.22 0.33 0.32 0.40
NPM 0.25 0.41 0.40 0.47 0.26 0.40 0.38 0.47 0.26 0.32 0.31 0.34 0.28 0.40 0.39 0.47 0.23 0.40 0.39 0.46 0.13 0.29 0.27 0.35
RFC 0.45 0.61 0.62 0.68 0.33 0.49 0.47 0.58 0.24 0.31 0.29 0.34 0.48 0.61 0.61 0.69 0.35 0.53 0.53 0.62 0.31 0.46 0.43 0.53
WMC 0.39 0.55 0.54 0.61 0.35 0.49 0.48 0.57 0.28 0.34 0.33 0.37 0.42 0.54 0.53 0.62 0.35 0.51 0.51 0.59 0.22 0.37 0.35 0.44
CBO 0.36 0.42 0.44 0.45 0.17 0.25 0.27 0.31 0.04 0.08 0.09 0.10 0.35 0.41 0.43 0.45 0.23 0.31 0.33 0.36 0.25 0.31 0.32 0.34
CE 0.35 0.41 0.43 0.44 0.14 0.23 0.24 0.28 0.01 0.05 0.06 0.07 0.33 0.40 0.42 0.44 0.21 0.29 0.31 0.34 0.27 0.33 0.33 0.35
CAM −0.32 −0.48 −0.47 −0.54 −0.28 −0.43 −0.41 −0.51 −0.21 −0.27 −0.26 −0.30 −0.36 −0.48 −0.47 −0.55 −0.29 −0.45 −0.45 −0.53 −0.18 −0.33 −0.30 −0.40

study does not confirm these results on the large dataset that we

used in our experiments.

Toure et al. [51] computed the Spearman’s correlation between

seven C&K metrics (CBO, LCOM, WMC, RFC, DIT, NOC, LOC)

and three of the test effort metrics considered in our study: T-LOC,

T-NOA and T-NMC (TINVOKE in Toure et al.’s study). Our study

confirms the high correlation of LOC, RFC and WMC and CBO

with test effort, but our experiments do not confirm the LCOM high

correlation.

In a nutshell, our experimental results indicate that the OO de-

sign properties of size, complexity and coupling largely affect the

testability of Java classes, confirming the results and conclusions

of previous studies [22].

We explain such correlations as follows: Testability decreases with

increasing class size, as the higher the number of lines of code and

methods, the more test cases a developer needs to write. Testability

decreases with increasing complexity, as effective testing must exer-

cise a number of paths that increases with the complexity of the

code. Testability decreases with increasing coupling, because classes

with high coupling use many components of the system, increasing

the execution paths to exercise with the tests [43].

In addition, this paper indicates that also the OO design prop-

erty of cohesion highly correlates with the test effort: cohesion

is inversely proportional to test effort, thus directly proportional to

testability. Intuitively, low cohesion indicates a low degree of inter-

play among elements of the same class [45], thus classes with low

cohesion need to be exercised with more tests.

3.5 Threats to Validity

A possible threat to external validity is that our results do not

generalize to other subjects and OO programming languages. We

mitigated this threat by considering thousands of Java projects.

The size of our study is several order of magnitude larger than

similar studies [12, 13, 51]. Repeat our experiments considering a

different OO programming language is an important future work.

A possible threat to internal validity is that there might be errors

in our tool or scripts that led to wrong results or metric values. We

mitigated this threat by (i) building our static analyzer on top of

CKJM-extended [34], a fully-fledge tool, and (ii) manually vali-

dating the correctness of the metric values on a small sample of

classes. We release our data and scripts, and welcome external

validation [48].

4 RELATEDWORK

The definitions of “software testability” [54] can be classified into

two groups [22]: (i) “ease of testing”, measured in terms of test-

effort metrics (for instance, test size) [12, 13, 46, 51], and (ii) “ease

of revealing faults”, measured in terms of test-quality metrics (such

as the mutation score and coverage) [1, 18, 30, 33, 57].

In this paper, we comply with the first interpretation, which is

the most popular one in literature [22]. However, while we rely on

test-effort metrics to measure the ease of testing, we also consider

test-quality metrics. Indeed, the key contribution of this paper is to

normalize test-effort metrics with test-quality metrics. At the best

of our knowledge, this is new to software testability studies.

We discuss the related work on measuring and predicting test

effort (which is most closely related to this paper) and test quality,

and discuss orthogonal testability work.

Measuring and predicting the test effort. Our work is inspired

by the studies of Bruntink and van Deursen on the correlation
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between the Chidamber and Kemerer (C&K) and test-effort met-

rics [12, 13]. Bruntink and van Deursen provide preliminary evi-

dence that C&K and test-effort metrics correlates, ad thus the C&K

metrics can be use to predict the test effort [12, 13].

Badri and Toure studied the correlation of cohesion metrics

(LCOM and LCOM*) with test effort [2] on two projects, concluding

that there exists a moderate correlation [2]. Our results do not

confirm such a finding. Subsequently, Badri and Toure improved

their previous study, increasing the number of software metrics (by

adding LOC, CBO, DIT, NOC, WMC, and RFC), and considering

three projects instead of two [3]. Badri et al. also investigated the

effect of control flow to the test effort [4].

Recently, Toure et al. investigated the use of a metric called

“Quality Assurance Indicator” to predict the test effort on eight open-

source Java projects [51]. Gupta et al. proposed a fuzzy technique

to combine values of OO software metrics into a single value called

testability index [24]. Singh et al. relied on neural networks to

predict testing effort from OO metrics [46].

These studies suffer from three main limitations. First, they in-

volve at most eight software systems. Thus, it is difficult to guar-

antee that the results generalize to other systems. Notably, a small

number of subject systems is common to all testability studies [22].

Among the 182 testability studies that involve the analysis of soft-

ware systems, Garousi et al. showed 161 (88 %) analyze five or less

systems, while the remaining 21 (12 %) studies involve at most 45

systems [22]. Conversely, in our study we analyzed classes from

1,186 projects. Second, they focus on some subsets of the class met-
rics that we consider in our study. To the best of our knowledge

our study is the most comprehensive in terms of the number of

class metrics. Third, all of these studies do not consider test-quality

metrics for normalization. Lacking a quality assessment of the tests

leads to imprecise correlation results and prediction models. In-

stead, we computed test-quality metrics for each test class and use

them to normalize the test-effort metrics.

Measuring and predicting the test quality. Cruz and Eler an-

alyzed four open-source systems, and studied the correlation be-

tween Chidamber and Kemerer’s (C&K) metrics and the quality

of the tests (coverage and mutation score) [1]. They concluded

that the C&K metrics CBO, LCOM, RFC, and WMC have a moder-

ate influence on test quality, and thus a design with low coupling,

low complexity, and high cohesion can lead to high coverage and

mutation scores.

Khoshgoftaar et al. used neural networks to predict testability

based on mutation analysis of source code metrics [33]. Jalbert et

al. predicted mutation scores by combining source code metrics

with coverage information [30]. Yu et al. proposed a new set of

metrics for concurrent programs to predict the mutation score of

concurrent tests [57]. Zhang et al. proposed a machine learning

approaches to predict mutation score from easy-to-access features,

for instance, the coverage information, oracle information, and

code complexity [58]. Mao et al. extended the approach of Zhang et

al. by considering a cross-project setting, more features and more

powerful deep learning models [35].

These studies aim to predict test quality, while our work aims

to measure and predict the test effort with test-quality metrics

(mutation score and coverage) as normalization factors.

Orthogonal work. Design for testability, improvement of testa-

bility and fault proneness studies aim at orthogonal goals.

Design for testability aims to measure software testability early

in the development process, for example during requirement analy-

sis [7, 32, 53], and design [7–10, 41, 52]. Applying testability analy-

ses early in the development process has the advantage that design

refactoring can improve testability before starting the implementa-

tion [41].

Improvement of testability aims to refactor programs to increase

their testability, for instance, by obtaining a version of the program

more amenable to test generation [26].

Basili et al. found that several C&K metrics are associated with

fault proneness [6]. Similarly, Gyimothy et al. exploited machine

learning methods to predict faults from C&K metrics [25]. Briand

et al. explored the relationship between class metrics and the prob-

ability of fault detection [11]. Yu et al. examined the relationship

between the class metrics and fault proneness [56].

All of these approaches have a different goal with the one of in

this paper. An interesting future work is to investigate if our idea

of normalizing the test effort with test quality can also help these

approaches achieve other testability goals.

5 CONCLUSIONS

This paper proposes a new software testability approach that ex-

tends current practice with the novel idea of normalizing test effort

with respect to test quality. It also presented the results of an exten-

sive study that involves 9,861 pairs of Java classes (with a total of
1,594,309 lines of code) and corresponding JUnit test cases taken
from 1,186 GitHub projects.

Our results indicate that normalizing test effort with test quality

largely increases the correlation between class metric and test effort.

An improved correlation between class metric and test effort means

a better prediction of test effort.

The normalization procedure that we presented in this paper en-

ables the construction of large-scale prediction models from hetero-

geneous software systems implementedwith different test adequacy

criteria. Leveraging our normalization procedure we could train

different machine learning models considering different versions of

our data-set obtained by normalizing test effort by different target

test-quality values, such as 70 %, 80 %, 90 % line coverage. Given

in input a class, its class metrics values, and a target test-quality

value, we could predict the test effort using the prediction model

corresponding to the target test-quality value in input.

In this paper, we introduced the normalization process under the

assumption of a proportional growth of the test effort with respect

to the test quality. For example, if five test cases (T-NOT = 5)

achieve a branch coverage of 50 %, our normalization assumes we

need ten test cases (T-NOT = 10) to have a branch coverage of

100 %. One avenue for future work is to study the impact of this

assumption on the correlation between class and test-effort metrics.
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