1134

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Trustworthy Distributed Certification of
Program Execution

Alex Wolf @, Marco Edoardo Palma

Abstract—Verifying the execution of a program is complicated
and often limited by the inability to validate the code’s cor-
rectness. It is a crucial aspect of scientific research, where it is
needed to ensure the reproducibility and validity of experimental
results. Similarly, in customer software testing, it is difficult
for customers to verify that their specific program version
was tested or executed at all. Existing state-of-the-art solutions,
such as hardware-based approaches, constraint solvers, and
verifiable computation systems, do not provide definitive proof of
execution, which hinders reliable testing and analysis of program
results. In this paper, we propose an innovative approach that
combines a prototype programming language called Mona with
a certification protocol OCCP to enable the distributed and
decentralized re-execution of program segments. Our protocol
allows for certification of program segments in a distributed,
immutable, and trustworthy system without the need for naive
re-execution, resulting in significant improvements in terms of
time and computational resources used. We also explore the
use of blockchain technology to manage the protocol workflow
following other approaches in this space. Our approach offers
a promising solution to the challenges of program execution
verification and opens up opportunities for further research and
development in this area. Our findings demonstrate the efficiency
of our approach in reducing the number of program executions
by up to 20-fold, while maintaining resilience against various
malicious attacks compared to existing state-of-the-art methods,
thus improving the efficiency of certifying program executions.
Additionally, our approach handles up to 40% malicious workers
effectively, showcasing resilience in detecting and mitigating ma-
licious behavior. In the EQUIVALENTREGISTERSATTACK scenario,
it successfully identifies divergent executions even when register
values and results appear identical. Moreover, our findings
highlight improvements in time and gas efficiency for longer-
running problems (scaled with a multiplier of 1,000) compared
to baseline methods. Specifically, adopting an informed step size
reduces execution time by up to 43-fold and gas costs by up to
12-fold compared to the baseline. Similarly, the informed step
size approach reduces execution time by up to 6-fold and gas
costs by up to 26-fold compared to a non-informed variation
using a step size of 1,000.

Index Terms—Program execution -certification, distributed
computation, blockchain.

Received 21 February 2024; revised 5 February 2025; accepted 7 February
2025. Date of publication 13 February 2025; date of current version 18 April
2025. This work was supported by Swiss National Science Foundation (SNSF)
under Grant SNSF204632. Recommended for acceptance by A. Beszédes.
(Corresponding author: Alex Wolf.)

The authors are with the University of Zurich, CH-8006 Zurich, Switzer-
land (e-mail: wolf@ifi.uzh.ch; marcoepalma@ifi.uzh.ch; salza@ifi.uzh.ch;
gall@ifi.uzh.ch).

Digital Object Identifier 10.1109/TSE.2025.3541810

, Pasquale Salza

, and Harald C. Gall Y, Member, IEEE

I. INTRODUCTION

ERIFYING that a program execution produced the correct
V output given specific inputs is a fundamental challenge in
software verification [1], [2]. This task involves confirming that
the intended code was executed having the same input, code,
and output. However, various risks arise in this confirmation
process: the code could be modified by malicious actors, the
inputs altered, the correct output might have been generated by a
different algorithm than intended, or random errors could occur
due to varying configurations. Unlike verifiable computing [3],
which focuses on providing proofs for results, verifying com-
plete program executions introduces distinct challenges (e.g.
code modifications that do not reflect in the final result) due
to the difficulty of ensuring the integrity of all these aspects
across the entire execution path. Current state-of-the-art solu-
tions (such as Parno et al. [3], Teutsch et al. [4], and Ben-Sasson
et al. [5]) fail to guarantee the authenticity of the execution
comprehensively, leaving a gap in reliable verification methods.

This problem spans multiple domains where trust in program
executions is critical. In research, reproducibility is essential
for validating findings, yet replicating complex processes is
often time-consuming and resource-intensive [6], [7]. Despite
reproducibility being a core principle of scientific integrity,
achieving it consistently remains challenging due to various
challenges, such as the significant effort, cost, and resources
required, the lack of standardized methods and tools, and the
necessity for a thorough understanding of the underlying code
[8], [9]. Similarly, in industrial settings, verifying program ex-
ecutions is crucial, whether for confirming that software tests
were genuinely conducted or for ensuring that program outputs
are trustworthy.

There are several approaches (such as Parno et al. [3], Teutsch
et al. [4]) that aim at verifying program execution. A traditional
one involves naively re-executing the entire program and care-
fully scrutinizing each step to confirm that the result matches
the anticipated output [2]. However, this method is infeasible for
large and complex programs that could potentially run for days
or require significant computational resources. Additionally, it
cannot differentiate between programs that produce the same
output but follow different execution paths, making it unable to
verify the intended execution occurred. Moreover, when multi-
ple stakeholders need to verify a program’s execution, repeat-
edly re-running the process becomes infeasible. For instance,
during software testing in a customer project, stakeholders, i.e.
clients, typically lack reliable methods to confirm that tests were

0098-5589 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0964-2224
https://orcid.org/0000-0003-3300-4828
https://orcid.org/0000-0002-8687-052X
https://orcid.org/0000-0002-3874-5628
mailto:wolf@ifi.uzh.ch
mailto:marcoepalma@ifi.uzh.ch
mailto:salza@ifi.uzh.ch
mailto:gall@ifi.uzh.ch

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

run on the correct version of the program, forcing them either to
acquire significant technical expertise or to trust the developers
blindly [10]. Long-running processes, such as batch processing
tasks, further discourage re-execution due to time and resource
demands [8].

Similarly, in the industrial setting, consider a scenario where
a software company delivers a critical application to a client,
claiming that it has passed all required tests. The client must
verify that the tests were conducted on the correct code version,
with accurate inputs, and valid results. However, there are risks
that the test results could be from an outdated or modified
version of the software, that incorrect inputs were used, or
that results were falsified. Both examples lack a method to
authenticate the program execution in a feasible way.

Previous work has suggested various approaches to tackle
such challenges. For instance, hardware-based approaches,
such as Trusted Execution Environments (TEEs), offer tamper-
resistant processing environments running on a separated ker-
nel, that ensure the authenticity of executed code, the integrity
of runtime states and memory [11], [12], [13], [14]. TEEs pro-
vide a solid foundation for secure execution and can be effec-
tively combined with other approaches. However, such systems
require the availability of specialized hardware, which can be
a significant barrier to their widespread adoption [15]. Even
with hardware attestation mechanisms, there is no guarantee
that malicious actors would not alter results post-execution [15],
[16]. Additionally, TEEs are vulnerable to side-channel and
cross-layer attacks, further complicating their reliability [17].
In practice, using TEEs requires fully trusting a single, central-
ized instance to execute the code correctly, demanding complete
confidence in that entity. In the previously mentioned industry
scenario, while TEEs could provide a controlled environment
for running tests, they fall short of fully addressing verifica-
tion concerns unless the environment is entirely trusted and
safeguarded against both malicious tampering and accidental
errors.

Software-based approaches, such as constraint solvers [3],
do not require specialized hardware and have the theoretical
capability to analyze every line of code in a given constraint.
Nonetheless, the verification process would require either a pro-
found understanding of the internals of the code or blind trust
in a third party that provides the constraints. Additionally, when
dealing with recursive functions or large programs, the number
of constraints required would increase exponentially, leading
to significant computational and practical challenges [18], [1].
In the industry scenario, verification through constraints would
require detailed constraints for each code statement to ensure
that the correct code, inputs, and intermediate results were
processed accurately. Therefore, the feasibility and ease-of-use
of such systems remain questionable at best.

Other software-based approaches, such as verifiable compu-
tation systems, face similar challenges as constraint solvers.
Verifiers would require deep knowledge of the code to generate
and verify the necessary assertions to produce a proof. Addi-
tionally, writing assertions depends on an understanding of the
code and domain, which requires significant prior knowledge,

1135

time, and effort [19]. Alternatively, one could generate random
assertions based on the execution of sample inputs, but those
might not be non-trivial assertions.

A potential solution would be to combine the naive approach
of re-executing the full program with a trustworthy and im-
mutable environment to persist the result [4]. By doing so, the
need for multiple re-executions by every interested party would
be eliminated. However, re-executing the full program signifi-
cantly reduces the usability of such a system due to increased
time and computational demands, as a single re-execution could
be malicious. As such, multiple re-executions are necessary for
the system to achieve trustworthiness.

By considering all the above mentioned limitations, in this
paper, we present an innovative approach that combines a pro-
totype programming language, MONA, with a certification pro-
tocol. Our prototype language facilitates the segmentation of
programs into smaller, more manageable components through
our novel Halt and Resume (H&R) approach. When combined
with our certification protocol On-Chain Certification Proto-
col (OCCP), which allows these segments to be certified by
re-executing them in a distributed and trustworthy manner—
without resorting to naive re-execution—the protocol takes ad-
vantage of the immutability and decentralized nature of the
underlying blockchain to ensure the reliable certification of pro-
gram segments. This design enhances robustness by mitigating
several potential attack vectors and fortifying the system against
malicious activity. Moreover, it can reduce the number of re-
executed expressions compared to a naive re-execution of the
entire program and can detect executions of different programs
that produce identical register values (Equivalent Register At-
tack (ERA)). Our approach focuses on functional aspects, such
as the authenticity of the execution given the code, memory
states, and the final result of the computation, leaving non-
functional properties like performance or resource consumption
out of scope. In line with other approaches in this space, we
packaged our protocol utilizing a blockchain setup [4], specifi-
cally POLYGON as a layer 2 blockchain, to manage the protocol
workflow. Hence, this results in a distributed, immutable, and
trustworthy system [20], [21].

We evaluate our approach by comparing the number of re-
executed expressions (as it remains unaffected by paralleliza-
tion) with a naive baseline approach on six popular benchmark
problems. Thus, we evaluate the feasibility of our approach
focusing on robustness and effectiveness.

To assess the effectiveness and robustness of our approach,
we conducted experiments to answer three key research ques-
tions: For RQ1 — Program Segmentation, our experiments con-
firmed that the Mona Interpreter (MI) prototype consistently
records and replays program executions across various step
sizes and benchmarks. This allows our prototype language to
segment an execution into traces and replay any given trace to
reproduce the original outcome. We observed a trade-off be-
tween trust and performance, where smaller step sizes enhanced
trust but required more storage and computational resources,
while larger step sizes improved performance at the expense of
reduced trust.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1136

For RQ2 — Certification Protocol, we evaluated the effec-
tiveness of OCCP and found it capable of handling malicious
scenarios with up to 40% malicious workers, reliably certifying
tasks or rejecting them as needed. Additionally, our results
demonstrate that our approach can reduce the number of ex-
ecuted expressions by as much as 20 times.

For RQ3 — Informed step size, our experiments show that an
informed step size reduces both time and gas costs. Specifically,
it reduces time by up to 43-fold and gas costs by up to 12-fold
compared to the baseline after a scaling multiplier of 1,000,
with time savings already observed at a scaling multiplier of
100. However, these reductions do not apply to gas costs for
smaller scaling multipliers.

When compared to a non-informed step size variation (see
RQ2), we observed up to a 10-fold improvement in time re-
quirements for a step size of 1,000, and gas costs were reduced
by up to 6-fold.

Overall, our findings demonstrate that the proposed approach
reduces re-execution requirements, enables time and gas cost
savings through the use of an informed step size, and exhibits
robustness against various malicious attacks, achieving a zero
error rate compared to the baseline.

To summarize, the main contributions of this paper are:

* a prototype programming language called MONA, which
enables distributed and decentralized re-execution of pro-
gram segments;

* a certification protocol OCCP that allows for certification
of program segments of sequential and deterministic pro-
grams in a distributed, immutable, and trustworthy system
without the need for naive re-execution;

* an implementation of our protocol using POLYGON as a
layer 2 blockchain technology to manage the protocol
workflow.

The implementation, benchmark datasets, and results are avail-
able in the replication package [22] and published at the ad-
dress https://github.com/Lochindaal/occpReplicationPackage.
The MONA language [23] is publicly available at the address
https://github.com/MEPalma/Mona/.

The rest of the paper is structured as follows. In Section 1I,
we provide a detailed description of our prototype language.
Section III presents our proposed on-chain certification proto-
col. Sections IV and V showcase the experiments, threats to
validity, and results. In Section VI, we survey the related work.
Finally, we conclude in Section VII with a summary and future
work.

II. MONA INTERPRETER

The system introduced in this paper utilizes a unique inter-
preter, built on top of ANTLR4!, to verify the reproducibility of
specific segments of previous program executions, without the
need to re-run the entire program from the beginning. In more
formal terms, when a program P is executed, it produces a
sequence of expressions denoted as {eq, €1, ..., €, } along with
their corresponding memory states {mg,mq,...,my}. In this
system, the new interpreter is used to verify that evaluating P

"https://www.antlr.org v4.12.0

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

on a specific memory state m, which is obtained after evaluating
some ¢ number of expressions, for another p expressions, leads
to the memory state m;,,. Importantly, this verification process
is conducted without having to re-execute the entire program
from eg to es4p. This means that verifying m;y, from m,
involves evaluating just p expressions instead of ¢ 4 p expres-
sions. The novel Halt and Resume (H&R) mechanism is what
provides this functionality, which is also directly responsible for
enhancing the efficiency of the proposed system. This efficiency
boost enables the system to certify program execution within a
distributed setting by re-executing the program just once, over-
all, a crucial advancement that will be discussed in greater detail
later in this paper, including its exploitation for the purpose of
verifiability.

In this section, we introduce the Mona Interpreter (MI)
as a fully functional interpreter for the MONA programming
language. The section also discusses the innovative Halt and
Resume (H&R) mechanism integrated into the MI, providing
insights into its inner logic. Additionally, an overview of the
language features of the MONA language and its assumptions
are presented.

Assumptions: Our current implementation of MONA operates
under the following assumptions:

* the evaluated application operates sequentially,

* it is deterministic and contains no external API calls with

non-determinism.

While MONA is Turing-complete, the current implementation
lacks certain features typically found in more mature languages.
For example, we currently do not support multi-threading or
constructs for iterating using the “in” syntax commonly seen
in for-loops. Although for-loops are not directly available, any
program requiring them can still be implemented using while-
loops, which are fully supported.

A. Mona Language

MONA is a C-style, dynamically typed, Turing-complete
programming language interpreted by the MI. It offers support
for the primitive types: character (e.g., 'n'), string (as mutable
lists of characters e.g., "Helloworld"), integer (e.g., 17), floating
(e.g., 1.24), and boolean (true and ralse). Moreover, it offers
native support for mutable list types (e.g., [1, 'a', [11),
and related functionalities for list extensions (e.g., [1, 21 +
[31), access (e.g., 11, 2, 31[ol), pythonic slicing (e.g., (1, 2,
31[0:21, [1, 2, 31[1:1, [1, 2, 31[:2]), and item assignment
(e.g., 12, 2, 31101 = o). Any primitive or list values, as well
as expressions, can be bounded to a variable identifier through
variable declarations (e.g., var identifier = 44;).

The language exposes functionality for the definition of
boolean and mathematical expressions respectively (==, <=, <,
>, >=) and (+, -, *, /). Boolean expressions can be nested in
C-style if — else if — else blocks for the computation of
conditional logic. MONA supports function declarations with
variable input arguments and return values. Function invoca-
tions are considered expressions and recursive function calls
are supported. Finally, MONA offers support for loops in the
form of C-style while expressions (e.g., while (func() > min)
{print ("HelloWorld!") }).

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Lochindaal/occpReplicationPackage
https://github.com/MEPalma/Mona/
https://www.antlr.org

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

B. Halt and Resume

Support for the Halt and Resume (H&R) strategy is integrated
throughout various phases of a MONA program’s lifecycle. This
lifecycle encompasses several stages, beginning with the initial
parsing phase, referred to as Parse-time followed by the execu-
tion of the program, during which the evolution of the memory
state is recorded in Record-time and concluding with partial
replay during Replay-time. During Parse-time the MI’s parser
undertakes custom logic to construct the program’s AST while
incorporating essential annotations to facilitate H&R support.
Record-time signifies the phase in which the interpreter evalu-
ates the program. Here, after processing a user-defined number
of program expressions, execution is halted, and a representa-
tion of the memory state at that point is persisted. In the final
phase of the program’s lifecycle, known as Replay-time the MI
is capable of loading a specific memory state recorded during
Record-time. It then resumes program evaluation for a specified
number of expressions, subsequently halting and presenting the
resulting memory state.

This section presents the Halt and Resume (H&R) strategy
and how it seamlessly integrates into the Parse-time, Record-
time, and Replay-time stages of a MONA program’s lifecycle.

Parsing Mona Programs: During Parse-time, the MI's parser
employs specialized algorithms to construct the program’s AST
while simultaneously adding vital annotations essential for sup-
porting the H&R strategy. This annotation process establishes
a precise one-to-one relationship between program expressions
and a unique set of positive integers, known as Sequence Ids
(seqids). Each program expression is assigned a specific seqid,
and the assignment is carried out in such a way that sorting the
expressions based on their corresponding seqid values naturally
aligns with the order in which these expressions are evaluated.
The MI achieves this binding through a bottom-up parsing
approach, systematically assigning seqid values to expressions
from an ascending integer counter.

The seqid annotation seamlessly integrates into the AST,
irrespective of parsing strategy (bottom-up or top-down). While
the choice of bottom-up parsing was for implementation conve-
nience, it does not limit the applicability of the seqid annotation.

Fig. 1 presents a simplified representation of the original
AST derived from the MONA program in Listing 1, showcasing
the outcomes of preprocessing. This program encompasses a
function declaration and a function call designed to print the
content of a string literal to the standard output. Notably, each
expression within the program is annotated with a unique seqid
value, as displayed in the bottom right corner of each grammar
rule node in Fig. 1.

The significance of these seqid values becomes apparent
when we consider the execution logic within the code block
labeled str1st. The evaluation of the function in question hinges
on the systematic evaluation of its various subcomponents,
strictly adhering to the order dictated by their respective Se-
quence Id (seqid) values. For instance, in the function strist
(labeled as 9), the evaluation initiates with the function’s param-
eters (params, seqid o). Subsequently, it proceeds to evaluate the

1137

BoolExpr |

FuncDecl o Ist
serist() 1 len(ist) > 0 print() o+ Ares 3
Body g+ Ifstmt LI 1st[0]

Program 13 Body

FuncCall 11{—>| Args 10 LS 4

strist(.) I, 2, 3] strist(.)

Fig. 1. The Abstract Syntax Tree (AST) of the code in Listing 1.

Listing 1. An example of code in MONA language.

decl strlst(lst) {
if (lemof (lst) > 0) ({
print (1st[0]);
strlst (lst[1:]1);

function’s body (sody, seqid s). However, this body is evaluated
only after its child if expression (1f_stmt, seqid 7) has been
processed. In turn, the 1£_stmt itself is evaluated following the
evaluation of its Boolean expression (soolexpr, seqid 1), and
subsequently, its own body (sody, seqid), before ultimately
returning a result. Expanding this logical sequence to the two
expressions within the body leads to the following order of eval-
uations, where “evaluated” means that the evaluation has either
returned or terminated: params (seqid o), BoolExpr (seqid 1), args
(seqid 2), print (seqid 3), args (seqid 4), Funccall (seqid s5), Body
(seqid 6), 1£_stmt (seqid 7), Body (seqid &), Funcpecl (seqid 9).
This initial step is crucial for enabling the subsequent Resume
logic, which intelligently prunes the execution of previously
evaluated expressions when loading a specific memory state,
contributing to the efficiency of the H&R strategy.

Recording Mona Programs: During the program execution,
the MI introduces additional operations compared to conven-
tional interpreters. These operations are designed to modify the
memory state in a manner that allows future Replay workflows
to resume evaluations from the precise expression where the
execution was halted, all while bypassing the re-execution of
previously processed expressions. The primary objective of this
stage in the program’s lifecycle is to ensure that the resumption
logic operates seamlessly without awareness that a portion of
the evaluation tree is being pruned as already executed. To
achieve this, the Record stage introduces a novel and essential
component to the environment’s value access and update logic,
known as the memvar.

The memory state utilized by the MI can be referred to as the
tuple (S, M, C,1). In this tuple S can be considered as a tra-
ditional program stack, hence a Last-In-First-Out (LIFO) data
structure that serves in exchanging inputs and output between
expressions in the same program scope. M is the program’s
memory, in which the program can read and write key-value
pairs, in accordance with program scopes and access policies.
C is instead the list of the last executed expression seqids
for each open program scope. Finally, ¢ is the integer index
value determining which position in C' the program is currently
evaluating.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1138

The information contained in C' is crucial for Resume work-
flows, as it informs the MI about to what depth the evaluation
tree was evaluated for each program scope. In more practical
terms, during evaluation, after each program expression has
been evaluated and returns, its seqid is set as the seqid in C' for
the current scope index ¢. For instance, let us consider the pro-
gram illustrated in Listing 1. At the outset of evaluation, the val-
ues of C' and 1 are set to [—1] and O respectively, indicating that
the program’s main scope has not yet executed any expressions.
As the program begins, it encounters the first function call,
31). Initially, it evaluates the argument expres-
sion, args (11, 2, 31). Upon completion, this update causes C'
to become [10]. Furthermore, this function call introduces a new
scope, where strist is evaluated. Consequently, the values of C
and ¢ change to [10, —1] and 1 respectively, signifying that the
program is now operating within scope 1, where no expressions
have been executed. The 1£_stmt in the function’s body causes
another scope addition whenever the evaluation unfolds in its
body. As the boolean expression eoolexpr evaluates to True in
the current scope, C' and ¢ are updated by 1£_stmt to [10,1, —1]
and 2 before evaluating its body. Continuing with the example,
as the evaluation of strist proceeds and computes the first print
expression, C' and i become [10,1,3] and 2 respectively. As
the recursive call to strist is executed, it updates C' and i to
[10,1,4,—1] and 3, signaling another scope addition. When
scopes are eventually closed, as in the case of a return from
a call to strist, the last open scope is removed from C', and 7 is
decremented by one step. Consequently, the program concludes
with C' and 4 holding the values [12] and 0 respectively, reflect-
ing the scope changes and expression execution throughout the
program’s evaluation.

While using C' and 7 to keep track of the evaluated tree depth
helps the Resume logic determine when to prune evaluation,
it is insufficient for handling scenarios where the unfolding of
evaluation depends on execution data. For instance, If Blocks
contain multiple expression bodies, of which only one should
be executed based on the boolean expression of each iffelse
if conditions. Similar limitations are found in other C-Style
constructs like loops, where the body is executed based on loop
conditions and update expressions. To address such cases, we
introduce the concept of memvars. This novel strategy connects
the program’s evaluation components with the program’s en-
vironment and caches associations between evaluation compo-
nents and stack values. This ensures that the evaluation always
receives the expected value during both execution and resump-
tion. During execution, when a component needs to retrieve
the value of a branch decision variable, it invokes the memvar
to read the stack. To do it, the component provides its seqid
and a unique identifier representing the name of the variable
being read. This identifier is most relevant when a component
accesses multiple such values in its logic thereby ensuring
multiple memvar do not overwrite each other. The memvar
uses these values to search in M within the current evaluation
scope for the cached output of the variable. If available, it
is simply returned to the component; otherwise, the value is
fetched from S, stored in M, and then returned. As a result,

strlst([1, 2,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

during evaluation, memvar continually caches values from S
into M. However, during Resume, these values are retrieved
from the cache rather than from S when pruning. This strat-
egy ensures that when resuming, the evaluation unfolds in the
correct branch of the sub-program without requiring explicit
support within the evaluation components. Importantly, this
strategy does not lead to memory leaks in M. When a scope is
fully evaluated and closed, it is not only reflected in C' but also
in M, where all data-related values from the just-closed scope
are removed. The memvar only retains values that certain evalu-
ation nodes may have used within the currently open evaluation
scopes.

While the MI handles the seqid update logic and memvar
strategies during program execution, it also takes responsibil-
ity for creating periodic snapshots of the execution memory.
The MI creates periodic snapshots of the execution memory
as part of its program evaluation process. To achieve this, it
maintains a counter that keeps track of the number of ex-
pressions executed. When this counter reaches a user-defined
threshold, the evaluation is paused, and the current memory
state is saved to disk. The threshold is denoted as the Step
value, which infers the number of expressions evaluated be-
tween Halt events. It is worth noting that program start and
end snapshots are exceptions and are always recorded, regard-
less of the expression count. Moreover, unlike the relatively
coarse-grained node separation seen in the AST in Fig. 1, the
MI produces a significantly more fine-grained node separa-
tion. This means that the program can be halted in a much
larger number of scenarios, including during the evaluation of
expressions.

Replaying Mona Programs: In the final phase, known as
Replay-time, the MI can be directed to load a specific memory
state recorded during the Record-time phase. It then proceeds
to resume program evaluation from the saved memory state,
continuing for a specified number of expressions. During this
Resuming action, the MI traverses the AST but prunes previ-
ously evaluated subtrees, utilizing seqids to determine which
parts of the evaluation tree should be skipped.

Thanks to the work performed by the MI during Record-
time, the Resume logic presents no significant deviations from
traditional evaluation logic. This means that the MI evaluates
the program without being aware that it is resuming from a
non-clean memory state. Each evaluation node follows a logic
wherein, if the value of C' at ¢ is greater than its own segqid, it
will not execute its inner logic but will simply return, effectively
pruning its subtree of evaluation. This logic is valid because if
the environment’s active seqid is greater than that of a node, it
indicates that this node has already been evaluated. Simultane-
ously, memvar ensures that when a critical branching value is
being read, it is always available.

As a result, the Resume logic can reconstruct the evaluation
tree by loading the provided memory state into memory and re-
setting ¢ to 0. The previously executed evaluation tree is pruned,
and execution resumes whenever the environment’s active seqid
is not greater than the current node being evaluated.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

1139

User
gogram IIr;put
! !
C Execute)
'
0 1 n \
Traces | % | % 7 ’ 0, l Output
I
C Hash)
| n | ncte) [rv | | 1O |
C Concatenate and hash)
Execution hash H

Blockchain
r-----------------"-"-"-"-"“--""-""=-""7/""”"/""”""”""”"¥"”7/¥‘“”-/"=”/-"”7/-""”"”""="~= |

Data

|
>
|
|
|
|
L

I Workers

(Execute)
C HTh)

C Hash)

| = h) ho) . hOL) |

l

Fig. 2.

III. ON-CHAIN CERTIFICATION PROTOCOL (OCCP)

OCCP combines a certification mechanism with blockchain
technology to provide an immutable, decentralized, and trust-
worthy system for verifying program execution. To enable dis-
tributed certification, we leverage the functionality of Halt and
Resume (H&R) of MI (see Section II). This feature is essential
for splitting program execution into parts or traces that can
be independently and in parallel managed by a distributed and
trustworthy system. A centralized approach to computing the
entire program is unfeasible because it cannot guarantee that ev-
ery participant will execute their part correctly. With the ability
to H&R execution, the interpreter enables the re-execution of all
expressions once, as in the initial and original execution of the
program, but with the added advantage of parallelization, which
reduces the probability of introducing malicious behavior.

The certification of program execution is essentially the prob-
lem of connecting each sub-execution of the program to its
successor in a distributed manner. We can think of this process
as the workers trying to solve a puzzle by finding the correct
sequence of sub-executions. To achieve this, the workers in the
blockchain provide the output hash of each sub-program. With
at least half of the workers in agreement on the output hash,
the sequence of the execution memory states can be rebuilt. If
it is possible to rebuild the sequence, the sequence is hashed
and compared to the one provided by the original executor.

Compare and certify

-
A

An overview of the interaction between the user operations and protocol on the blockchain.

However, if a sequence cannot be rebuilt due to weak consensus
among workers regarding trace connections, the corresponding
traces are re-evaluated until agreement is reached. Ultimately,
the workers either agree that a correct execution sequence has
been reconstructed or agree that the given program cannot pro-
duce a sequence for the execution traces provided.

In this section, we present OCCP that we have developed for
the distributed certification of program execution on blockchain
technology. We describe the actors and workflow involved in
the protocol, along with how it copes with possible malicious
attacks. We also present the implementation details of OCCP
using Polygon as layer 2 blockchain technology.

A. Actors and Workflow

A simplified overview of how the approach works is illus-
trated in Fig. 2. We define a User as the entity who wishes to
verify the execution of a program. In particular, here we refer to
a program P as an evaluable MONA language derivation. In or-
der to verify an execution of P, the User is expected to execute
the Mona Interpreter (MI) in Record Mode on P and produce
the set of execution Traces 7. This means that the Ml is given a
fixed and arbitrary number of execution steps after which a Halt
event is invoked; or in other words the number of expressions
between two Halt events. Each Halt event produces a T, which
is the tuple (Z;, s, P, O,) where Z; is the program’s memory

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1140

Task distribution

SmartContract Worker

Replication process

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Quorum and sequence reconstruction

SmartContract

h(Ti)

No

Distribute 5 to ‘

Execute trace
workers T

Randomize trace
Error
sequence

Yes

Fig. 3. The detailed flowchart of OCCP.

state at time ¢, and Oy is the program’s memory obtained after
executing P from Z; for s steps. It is important to note that the
recording of the program execution results in an ordered set of
T :{T;}. It is therefore true that Z; 1 = O;. Moreover, the step
value s is guaranteed to be constant for all traces but the trace
for which Oy is the program’s final memory state, for which s
is equal to the remaining number of steps from the penultimate
trace.

After the execution recording, the user provides the sys-
tem with an Execution Hash (#). It encodes the sequence
of memory states encountered during the execution. This is
computed by first applying the hashing function i on the se-
quence (Zy, Og, O1,...,0,) where n is the total number of
traces. The resulting hashed values sequence (hg, h1, ..., hy)
is applied again to & to obtain H. Hence, from 7, the User
produces T, for which 7; =T;\ O; and sends the system a
certification request consisting of the tuple (7’, H), as illustrated
in the User section in Fig. 2. Thus, the final state O,, is not
directly passed to the replay phase. The system verifies the
execution by delegating to the blockchain’s Workers (Ws), the
task of computing O; for each 7;, and obtaining the same # as
the one provided. More specifically, for each trace 7; a worker
will compute the resulting memory state O; by resuming P for
s expressions from Z; using the MI.

The following concepts regarding the blockchain side are
detailed in the flowchart depicted in Fig. 3. Once a worker
obtains O, it replies to the system with the hash of O; h;. This
reply represents a vote, for which Z; is the source memory state
for the output state descried by h;. Therefore, after the workers
voted for each Z;, the attempts to reconstruct the execution’s
memory state sequence. Such computation is carried out by
the workers until quorum is reached on the sequence value,
i.e. of all the responses, the sequence computed by half of the
workers plus one, with a simple majority rule implemented to
improve decision-making efficiency and responsiveness, while
allowing system operators to configure the majority threshold in
the smart contract based on specific needs [24], [25], [26], [27].
A W builds such a sequence by first computing to which h; the
workers agree Z; should map to. We call h,; the output hash
with quorum votes for some Z;. Hence, each Z; is connected

Hash target

Hash error
h(error)

C = h(P, 1, 0.)

1
1
1
1
1
1
1
1
1
! a
o Retry < e Abort.
| threshold certification
1
: 4
! No No
: ! i
Send vote)
> [7 = h(error), if error Quorum H =H
5 — (7)., otherwise | | |
1 T T
1 Yes Yes
1
: ¥
1
i Create certificate
1
1
1
1
|

to some other Z,, for which hy; equals to the hash value of
hp. If a sequence going through each Z; can be computed,
then the system certifies that for this sequence the same hash
value H as the one submitted by the User can be computed.
Instead, should a complete sequence not be computable, the
workers provide the system with the set of traces that do not
reach quorum to some output memory state. Thus, the system
delegates the computation of such traces to the workers, until a
quorum is obtained. Additionally, the system ensures that such
traces are not delegated to the workers who worked on the traces
previously. Therefore, ensuring that conflicts are resolved by a
diverse set of workers. Specifically, each worker is assigned a
unique identifier through which we distinguish the workers to
ensure this. Every worker is viewed equivalently by the protocol
and not further distinguished based on other criteria.

Therefore, we can think of the traces in the form of a puz-
zle that needs to be solved by the workers. More specifically,
the puzzle consists of a very specific directed acyclic graph
(DAG), which is structured as a linear chain—a straight line.
Formally, the DAG is defined as G = (V, E') with N vertices,
each representing a trace 7;. The goal of the puzzle is to find
the correct sequence of connecting the vertices to produce a
desired final output O, and generating a sequence hash H
that matches the one provided by the user. Therefore, each
W proposes independently an edge by computing the resulting
vertex from the one it got assigned.

Due to obfuscating the target of each trace 7; and ensuring
that the correct sequence of traces is unknown to the workers,
the only possibility of certifying an execution is through re-
execution and matching the newly computed outputs to recon-
struct the sequence hash # as illustrated by Fig. 2.

However, before we reconstruct the sequence, we execute
conflict checks. Any vertex that produces a conflict and is there-
fore not a vertex that has quorum is redistributed to a worker.
To formalize this, we first define the following notions.

We have a finite set of vertices, denoted as V = {vy,vg,
...,UuNn}, where each v; represents a trace. Additionally, we
have a set of directed edges, E, where each edge is represented
as an ordered pair (v;,v;), indicating a directed edge from
trace v; to trace v;. These edges represent the voting actions

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

of workers. Furthermore, the edges in £ form a linked list,
where each trace is connected to exactly one other trace in
the list, with the exception of the last trace, which has no
outgoing edge. Formally, for each v;, there exists at most one
v; such that (v;,v;) € E, and for the last trace vy, there exists
no v; such that (vy,v;) € E. While the final output O,, is
excluded from the set of traces 7 , the execution of the final
trace by the workers would create a new edge connecting to the
final output O,,, resulting in |’T| edges. For instance, consider
T = 76, 7'17 T3, where the correct sequence is ’76 —To— T —

0,,. Re-execution of 7; would generate the edge (7'17
leading to the edge set F = (76,7'2) , (7’2,7}) , (7’1,(9“>.

Consequently, a valid voting sequence must satisfy |7 | = |E|.
In cases of conflicting votes, only edges that achieve quorum
are considered valid.

We define a correct execution as one that satisfies two con-
ditions: 1) it matches the expressions provided by the user, and
2) it can be reproduced by the workers through the re-execution
of traces, resulting in a linear sequence of traces.

Lemma 1: A correct execution results in a DAG represented
as a straight line, where |Traces| = |[Edges|.

This formalization clarifies the structure and relationships
among the traces, thereby aiding in the analysis and verification
of the votes. These checks act as safeguards for Lemma 1,
ensuring that before the OCCP reconstructs the sequence, the
votes on the traces are evaluated to determine if they lead to a
potentially valid sequence.

1) Check 1: No Vertex is Allowed to Have More Than One
Outgoing Connection: For each vertex v; representing a trace,
there should exist at most one v; such that (v;,v;) represents
an outgoing connection: Vv; € V' : [{(v;,v;) € E}| < 1. This
check ensures that each trace, except the last one, has at most
one outgoing connection to the next trace.

2) Check 2: No Vertex is Allowed to Have More Than One
Incoming Connection: Similarly, for each vertex v; represent-
ing a trace (except the first vertex), there should exist at most
one v; such that (v;,v;) represents an incoming connection:
Vv; € Vi [{(vj,v;) € E}| <1. This check ensures that each
trace (except the first) has, at most, one incoming connection.

3) Check 3: There Should be no Cycle in the Graph: To
maintain the acyclic nature of the graph, we perform cycle de-
tection. V (v;,v;) € E, |{v; ~ v;}| < 1. Where v; ~» v; means
there exists a directed path from v; to v;. This condition ensures
that there is no way to return to a vertex v; starting from its
neighbors v;, i.e., no cycles exist.

Note that quorum is considered for all of the checks. Specifi-
cally, if an edge receives multiple conflicting votes from work-
ers, the validation checks will take into account the majority
vote or the agreed-upon decision by the quorum. It means
that if an edge is voted upon more than once, and the votes
conflict, the other conflicting votes will be disregarded in favor
of the majority vote. This approach promotes the resilience of
the protocol to discrepancies and malicious actors and ensures
that decisions regarding edge validity are based on a collective
consensus. Therefore, Checks 1, 2, and 3 collectively safeguard

1141

the fulfillment of Lemma 1 and ensure that the resulting graph
is indeed a DAG.

4) Voting and Quorum Example: To further clarify the vot-
ing and quorum mechanism, consider the scenario where four
workers, Wy, Wi, Wa, W3, are tasked with reconstructing a set
of traces 76, Tl, 75. For simplicity, we omit hashing details and
refer directly to the traces. Initially, each worker is randomly
assigned a trace: W, works on 75 and votes that re-executing
this trace leads to 75; W1 votes that 7} results in output O;
and W5 votes that 75 leads to 7;. This voting yields a trace
sequence 75 — 75 — ’Afl — O, where each trace currently has
quorum and is ready for verification.

Now, consider an alternative voting sequence where W, votes
that 76 leads to ’ﬁ, while the other workers vote as before.
In this case, 77 receives two incoming edges, violating Check 2
of Lemma 1. Consequently, the OCCP reassigns 7o and T3
to other workers. Worker W3 re-executes 76 and votes that it
leads to 7'2 while W, re-executes and votes that 7'2 leads to ’7A'1
This results in quorum with two votes for 75 — ’7] However,
this still leaves two outgoing votes from 7o, violating Check 1.
Therefore, 75 must be re-executed. Achieving quorum for all
traces necessitates a worker voting for To = T

B. Malicious Attacks Protection

The proposed OCCP protocol is designed to mitigate the im-
pact of malicious actors who may try to undermine the system’s
trustworthiness. Here are some scenarios in which the protocol
can protect against malicious behavior.

1) Malicious Workers Intentionally Return Incorrect Mem-
ory States: In this scenario, workers may try to tamper with
the memory states they return to the system. The protocol can
detect such behavior by comparing the sequence hash # to the
constructed one. If they do not match, the system can reassign
the task to another worker, and it will be ignored if quorum is
reached on another correct result (see also LAZYWORKER case
in Section IV).

2) Malicious Users Submit an Incorrect H: In this scenario,
a user may try to submit an incorrect # to trick the system into
certifying an incorrect execution. However, the protocol can
detect this behavior because the sequence of memory states is
included in the H. If the sequence does not match the one com-
puted by the workers, the system will not certify the execution
(see also MALICIOUSUSER case in Section 1V).

3) Equivalent Register Attack (ERA): In this scenario, a
malicious user may try to submit a different program than
the one that was executed. This scenario showcases that pro-
grams producing the same register values and results at each
step can be differentiated by the system. Furthermore, this
scenario identifies a gap in existing approaches that produce
proofs based on these register values [5], [28], [29]. Hence, it
is possible to provide a different implementation that results in
the same register states and outcome, rendering such systems
unable to provide verification of executions with certainty and
ease-of-use.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1142

To further illustrate this case consider two research teams
implementations: 1) the first one using a recursive approach, 2)
while the other one reads a pre-defined sequence from an array.
While both algorithms produce the same register states and
outputs they differ in many other aspects (e.g. code, execution
trace). Therefore, generating proofs using register states and
outputs would not guarantee that a specific algorithm was used
to compute said outputs.

The protocol can detect such behavior through the combi-
nation of re-executed traces by the workers that vote on the
correct path and the fact that MONA records the flow of an
application through an AST traversal mechanism. Addition-
ally, MONA records further values (e.g., memory, registers, 10)
that make the execution unique. Furthermore, the sequence
hash H includes those further values and would lead to a
different hash. Thus, replacing any trace or part of the pro-
gram would be noticed by the workers and the reconstructed
sequence hash would be distinguishable from the originally
committed one.

4) Malicious Workers Collude to Manipulate the Out-
come: In this scenario, a group of workers may collude to
manipulate the outcome of the quorum voting process by in-
tentionally returning incorrect memory states. However, the
protocol can detect such behavior by relying on the nature
of blockchain networks, i.e., we rely on the fact that it is
highly unlikely that all the workers are colluding. Therefore,
quorum on a sequence must be reached and additionally the
sequence hash H must be reproduced for a certificate to be
issued.

5) Malicious Workers Collude With the User to Manipulate
the Outcome: In this scenario, similarly to the colluding work-
ers case, the workers may collude with the User to manipulate
the outcome of the quorum voting process. Analogous to the
previous case, we rely on the nature of the blockchain network
to deal with this issue.

6) False Negatives and Positives: Considering the different
possible malicious attacks we discuss the impact and likelihood
of false negatives and positives.

A false negative occurs when malicious workers produce a
non-conflicting trace sequence that aligns with a hash # differ-
ent from the intended one. The probability of generating such
a valid non-conflicting sequence across the large number of
possible graph configurations is low and hinges on achieving a
malicious majority vote. The protocol also requires a consistent
quorum across traces to finalize certification, making it difficult
for adversaries to succeed.

To illustrate the probability of producing a non-conflicting
sequence when a majority vote of colluding malicious workers
is achieved, consider the following. Let n denote the number
of distributed traces |’7A’| The number of possible connected
graphs using n traces is 2(3), while the number of valid non-
conflicting sequences is n!. The probability of randomly guess-
ing one of these non-conflicting sequences from all possible
configurations is PnonCon flicting = 2?—;) However, even if this

sequence is found, the success of malicious actors still depends
on reaching a majority vote.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Additionally, for a false negative to occur, malicious work-
ers must consistently generate non-conflicting trace sequences
across rounds until a threshold ¢ is met. The probability that
malicious workers achieve quorum for all traces 7T in the first
round, assuming each trace is controlled by a malicious worker,
is p/7!, where p represents the likelihood of a worker being
malicious. As the number of traces increases (with smaller step
sizes), this probability decreases.

In scenarios where malicious workers collaborate effectively,
assuming they operate without internal conflicts and can com-
municate their intended trace sequences, they must control all
assigned traces to avoid conflicts. As workers are excluded from
revoting on the same trace, the group with a larger number of
members is more likely to dominate the outcome. The proba-
bility of malicious workers controlling all traces depends on the
number of traces, which is influenced by the step size. A smaller
step size increases the number of traces, reducing the chance
that a majority of malicious workers are assigned all of them.
Conversely, a larger step size decreases the number of traces,
increasing the likelihood of malicious control. For instance, if
the number of distributed traces is smaller than the total popula-
tion of workers, the likelihood of malicious workers receiving
all traces increases. Overall, a false negative would occur in
scenarios where malicious workers consistently produce a non-
conflicting and incorrect sequence hash, reaching quorum and
generating a reconstructed sequence hash H’ that deviates from
the original H once the threshold ¢ is met.

False positives arise when malicious workers either guess a
sequence resulting in a hash collision for SHA-256 or collabo-
rate as a group with a malicious user. In the latter scenario, given
a majority, the conditions mirror those faced by non-malicious
workers cooperating with an honest user.

The complexities arising from the voting mechanism— such
as exclusions and varying communication strategies— warrant
more detailed analysis in future research.

Our approach focuses on preventing false positives, as these
have a higher impact as this would entail a falsely certified
execution. On the other hand, a false negative necessitates a
renewed re-execution.

C. Implementation on Polygon Layer 2 Blockchain

We have implemented a Smart Contract (382 LOC) that
utilizes the OCCP to manage and store all traces T for each
program P uploaded. The Smart Contract was implemented
by using the Solidity language®. However, in order to improve
the efficiency and scalability of our protocol, we propose an
adaptation to a layer 2 POLYGON chain. By leveraging the
benefits of POLYGON, we can significantly reduce gas fees and
increase the transaction throughput for our Smart Contract. Ad-
ditionally, leveraging POLYGON as a layer 2 chain, we can store
the final certificate permanently on the underlying ETHEREUM
layer 1 chain once the main operations of the protocol have been
completed. This approach ensures that the certificate is perma-
nently stored on a more secure and widely adopted blockchain

2https://soliditylang.org/: v0.8.2

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

https://soliditylang.org/

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

network. However, it is important to note that this choice of
using POLYGON as a layer 2 chain is mainly for the purpose of
producing a working prototype, and further optimization and
exploration with different chains is left to future work.

To implement our adaptation, we deployed a local POLYGON
chain using POLYGON EDGE®. We used HARDHAT*, a library
that enables compilation, testing, and deployment of smart con-
tracts, to compile and deploy ours. Additionally, we deployed
a local AMAZON S3 instance using LOCALSTACK® to store the
large amount of trace files. While the use of S3 as a storage
solution for the traces may pose a potential security risk, it is
important to note that it only serves as a temporary storage
solution. The security of the protocol is ensured through the
transmission of the hash provided by the user on the blockchain,
and the storage of the final certificate, which is also stored
on-chain. However, for future optimization, the storage system
can be replaced with a more decentralized and secure solution,
such as Interplanetary File System (IPFS). This would provide
a fully distributed on-chain system, ensuring the highest level
of security and immutability for the stored data. Nonetheless,
this is left as an optimization for future work on the system.

Furthermore, we use a state-of-practice hash function, specif-
ically SHA-256, for the hashing throughout the application.
In order to do so we use the hashlib library provided by
PYTHON.

Finally, each of the workers is computing the replay of the
individual traces in a PYTHON client using our MI and the
WEB3.PY library® to interact with the smart contract.

IV. EXPERIMENTS

To test the feasibility of the proposed programming language
(see Section II) and the on-chain protocol (see Section III), we
organized the experiments into two parts. In the context of our
study, we formulated the following research questions:

RQ1 Can program executions be segmented into a collection
of traces that can be re-executed to reproduce the
original result and what impact does this have?

We evaluate the feasibility of the proposed programming
language interpreter MI described in Section II by assessing
its ability to produce correct and consistent output results when
re-executed from a specific snapshot. Additionally, we measure
the performance overhead associated with using the proposed
programming language, providing further insight into the fea-
sibility of the approach. By addressing these questions, we
aim to provide a comprehensive assessment of the proposed
programming language in terms of its ability to produce correct
and consistent results, as well as its performance and scalability.

RQ2 What impact does our proposed approach have on
reducing the number of executed expressions, and how
does it fare in terms of robustness against malicious
acts?

3https://github.com/OxPolygon/polygon-edge: v0.7.3-betal
“https://github.com/NomicFoundation/hardhat: v2.13.0
Shttps://github.com/localstack: v1.4.1.dev
Shttps://github.com/ethereum/web3.py: v6.0.0

1143

TABLE I
USED SYMBOLS

Symbol Description

IS] LIFO stack

M Program’s memory

C Sequence IDs of last executed expressions for open scopes
% Index for the current position in C' being evaluated
i/ Program input

@ Program output or a specific trace

P Evaluable Mona language derivation

T Set of traces

T Set of traces without outputs

Tis ’ﬁ A specific trace with or without outputs

w Workers

h Hashing function

H Execution hash

hn Hash of input (/) or output (O)

\%4 Vertices

E Edges

A specific vertex

S}
S

To assess the feasibility and efficiency of our proposed ap-
proach, we conduct an analysis to measure the number of ex-
ecuted expressions across various scenarios. These scenarios
include ideal conditions (HAPPY), where the system operates as
intended, as well as scenarios deliberately designed to mimic
malicious acts. By quantifying the executed expressions in
these different contexts, our goal is to evaluate the efficiency
and resilience of our approach. Furthermore, all scenarios will
be compared to the baseline of re-executing the full program
multiple times, also referred to as naive re-execution. We aim
to provide a comprehensive evaluation of the proposed on-
chain protocol and its ability to securely execute programs in a
decentralized environment.

RQ3 How does an informed step size affect the performance
of longer-running benchmark problems?

This research question investigates how an informed step
size influences gas costs, certification time, and executed ex-
pressions for longer-running benchmark problems. Addition-
ally, we aim to understand the conditions when the overheads
are outweighed by the performance gains, offering a deeper
understanding of its benefits. Investigating this relationship can
provide insights into choosing an appropriate step size and un-
derstanding the trade-offs between gas costs, certification time,
and computational efficiency. The informed step size is defined
as the total number of expressions divided by the number of
available workers, ensuring that each worker is assigned at least
one trace. This method aims to optimize resource utilization
and reduce protocol-related costs. To evaluate this, we simulate
extended benchmark scenarios by applying scaling multipliers
to the existing benchmark problems. These results are then
compared against two alternatives: the non-informed step size
approach outlined in RQ2 and the baseline method described
in RQ2.

A. RQI — Program Segmentation

To answer this question, we split the program’s execution into
a series of traces and re-execute them in order to reproduce the

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

https://github.com/0xPolygon/polygon-edge
https://github.com/NomicFoundation/hardhat
https://github.com/localstack
https://github.com/ethereum/web3.py

1144

original result. Each trace must be capable of reproducing the
next state of the program and, when played in sequence, should
ultimately produce the same result as running the program with-
out splitting. In other words, each trace 7; must be connected to
the next 7; 1 until the final trace is reached in order to ensure
that the program’s execution is correctly reproduced.

To evaluate the feasibility and effectiveness of the proposed
trace-based certification approach for program execution, we
defined the following benchmark problems:

* FIBONACCI: We compute fibonacci, which serves as a
poignant example of recursive algorithms. Additionally,
it highlights the importance of optimizing recursive algo-
rithms to avoid inefficiencies (iterative O(n) vs. recursive
O(2™)). We compute fibonacci of 17, resulting in 69757
executed expressions.

e FIBONACCIITERATIVE: A variant implementation of
FIBONACCI that uses an iterative approach. In this case we
use 98 as input resulting in 99934 executed expression.

¢ MERGESORT: We evaluate merge sort on a vector of size
142 using a worst-case scenario (O(nlogn)), yielding
99856 executed expressions.

* MATRIXMULTIPLICATION: We perform matrix multiplica-
tion on two matrices of dimensions 11 x 11 to produce
matrix C' = A x B, resulting in 86781 executed expres-
sions. This benchmark follows established conventions
[3], [30], [31], [32] and illustrates a time complexity of
O(n?).

* SHORTESTPATHFIRST: We compute the shortest path us-
ing the Floyd-Warshall (O(n?)) algorithm on a 13 x 13
matrix, resulting in 99619 executed expressions. which
is used for network routing and matrix inversion, mak-
ing it a common benchmark in verifiable computation
schemes [3].

* LANCZO0S: We employ the classic Lanczos resampling [33]
algorithm, adopted by various approaches [30], [31], [32],
to generate a low-resolution image from a high-resolution
image. With a varying time complexity between O(n) and
O(n?). Using a 5 x 5 pixel image as input yields 76128
executed expressions.

First, these problems are well-known and widely used in
the field of computer science and programming. This ensures
that our results can be compared with existing solutions and
evaluated against established benchmarks. Second, problems
have varying levels of complexity and computational require-
ments, allowing us to evaluate the effectiveness of the proposed
trace-based certification approach across a range of problem
types and sizes. By testing our approach on problems with
varying computational requirements, we can gain insights into
its scalability and effectiveness across a range of problem types.

For each problem, we conducted a preliminary investigation
to select the largest input that would lead to the evaluation of no
more than 100,000 expressions. Thus, allowing us to compare
the results fairly and judge the validity of each problem based
on a definitive result.

To evaluate the impact of different snapshot intervals on
the performance of the trace-based certification approach, we
compared the output of running the program without snapshots

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

to replaying the snapshots at different segmentation steps (1, 10,
100, 1,000 and 10,000). We also averaged the execution time
over 30 runs to provide a clearer view of how the overhead of
the snapshots impacted the runtime.

B. RQ2 — Certification Protocol

To examine the viability of our proposed on-chain proto-
col for program certification, we leverage the blockchain as a
trusted, immutable, and distributed system. We assess the pro-
tocol’s efficacy by executing all program traces in an unordered
manner, with each worker independently determining the result
of a given trace (without its output) T.

The protocol is engineered to certify tasks only when every
provided result can be combined into a chain of traces that,
when hashed, produce the hash of the target sequence. This
allows us to gauge the effectiveness of the protocol by verifying
whether a certificate was produced or not. Furthermore, we
assess the efficiency of the protocol by measuring the number
of executed expressions and compare it against the baseline,
providing a comprehensive evaluation of its performance.

Additionally, we record the gas costs [34] of certifying exe-
cutions on the chosen blockchain system to gain insights into
the viability of running our approach on the blockchain.

For the baseline comparison, we used the MONA language
along with a straightforward smart contract. Although alterna-
tive programming languages may offer faster execution, they
currently lack the halt-and-resume functionality provided by
our approach. Comparing various languages (e.g., C versus
Java) would inherently result in varying execution speeds, thus,
our focus is on developing a reliable certification mechanism
rather than focusing on execution speed. Our focus is on the
number of executed expressions, as this remains constant re-
gardless of parallel execution. In the baseline setup, each worker
re-executes the entire program and votes on the correctness of
the output, with certification requiring a majority vote, similar
to our proposed method. If certification fails, re-execution is
performed up to three times. Each baseline experiment was
repeated 30 times under conditions identical to our approach
to ensure a consistent comparison.

For the assessment of our proposed on-chain protocol, we
opted for the same benchmark problems as for RQ1. Addi-
tionally, we have defined four distinct scenarios for program
evaluation, namely:

* HAPPY case, where no malicious actors participate;

e LAZYWORKER case, where one or more of the workers

produces an incorrect result;

* MALICIOUSUSER case, where the user attempts to certify

an erroneous execution.

* EQUIVALENTREGISTERSATTACK case, where another pro-

gram with equivalent register values is submitted to exploit
a different execution maliciously.

We conducted 30 runs for each of these cases to en-
sure statistical relevance. However, we only generated an
EQUIVALENTREGISTERSATTACK example for FIBONACCI to
showcase the protocol’s capability to handle such scenarios.
Additionally, we measured the executed expressions in each

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

scenario to evaluate the protocol’s performance. Based on the
outcomes of preliminary experiments and feasibility analysis,
we selected step sizes of 100 and 1,000 for protocol evalua-
tion. These step sizes strike a balance between accuracy and
performance overhead, enabling us to gain insights into the
scalability of our proposed approach. Larger step sizes decrease
the number of generated traces and computational overhead for
each worker but lead to a coarser approximation of the original
program execution. Conversely, smaller step sizes offer a more
precise approximation of the program execution but increase the
number of generated traces and the computational overhead for
each worker. For all experiments, we employed 20 workers in
parallel to retrieve tasks from the smart contract and replay the
assigned traces. Additionally, we utilized 3 workers to verify
the proposed results and assess them for conflicts.

1) Simulation Cases Description: In the HAPPY scenario,
we assume that none of the participating actors act maliciously
and measure the efficiency of our approach by comparing the
number of executed expressions against the baseline, providing
insights into the performance impact of trace-based program
certification on a blockchain-based platform. Additionally, we
measure the time required for certification to gain insights into
the overhead produced by different step sizes and indirectly its
impact on the blockchain infrastructure overhead.

In the LAZYWORKER scenario, we introduce up to 40% ma-
licious workers who randomly select one of the other available
traces and votes for it instead of replaying the assigned trace.
Our approach should still be able to produce a certificate and
detect the conflicts introduced by the lazy workers. However,
we expect the number of executed expressions for this scenario
to be higher than the HAPPY scenario due to the additional com-
putational overhead required to detect and resolve the conflicts.

In the MALICIOUSUSER scenario, we assume that the user
produces all the required snapshots to replay the program but
intentionally provides a different result than the actual output
that is supposed to be certified. For example, the user may pro-
vide fibonacci (17) = 5 instead of the correct result fivonacci (17)
- 1597. We anticipate the number of executed expressions for
this scenario to be similar to the HAPPY scenario since the
introduced mismatch is simple and does not require significant
additional computation to detect and resolve.

In the EQUIVALENTREGISTERSATTACK scenario, the user fur-
nishes an alternate implementation of the algorithm, generating
identical register values as the original version. More precisely,
we present an iterative implementation for FIBONACCI in lieu
of the recursive approach. We expect the protocol to discern
this variation and terminate the certification process. Addi-
tionally, we anticipate the number of executed expressions for
this scenario to closely resemble those of the MALICIOUSUSER
scenario.

C. RQ3 — Informed Step Size

To investigate this question, we assess the impact of using
an informed step size on tasks with increased computational
demands. Benchmark problems are scaled using scaling multi-
pliers 1, 10, 100, and 1,000, which proportionally increase the

1145
TABLE 11
RQ3 SCALED BENCHMARK PROBLEMS
Exec. Exprs

Program

1 10 100 1,000
FIBONACCI 69,757 697,552 6,975,502 69,755,002
FIBONACCI
ITERATIVE 99,934 999,304 9,993,004 99,930,004
LANCZOS 76,128 761,226 7,612,206 76,122,006
MATRIX 86,781 866,550 8,664,240 86,641,140
MULTIPLICATION ’ ’ R e
MERGESORT 99,856 997,219 9,970,849 99,707,149
SHORTEST
PATHFIRST 99,619 996,163 9,961,603 99,616,003

workload by raising the number of executed expressions. How-
ever, this scaling is approximate because additional expressions
are not always generated when defining functions or referencing
existing variables. Details of these variations are provided in
Table II. A

The informed step size is calculated as w, where ||
is the number of workers, ensuring each worker processes at
least one trace. To evaluate its effect, we compare the perfor-
mance of the informed step size against the naive re-execution
baseline from RQ2, examining differences in time, gas usage,
and executed expressions. The results from multiplier 1 are also
compared to the outcomes of RQ2 without an informed step size
to isolate its direct impact.

For these experiments, the parameters from RQ2 are reused
with modifications: the step size is adjusted, and the number
of reruns is reduced to three (from 30) to accommodate time
and resource constraints. Although the informed step size is not
necessarily the most efficient solution, this analysis provides
useful insights into its trade-offs and informs future optimiza-
tion approaches.

D. Execution Setup

To ensure the consistency of the experiments, we ran all
experiments on the same machine with the same specifications,
i.e., Xeon Gold 6126 with 32 vCPUs and 256 GB of RAM.
The virtual machine was hosted on a cloud computing plat-
form with dedicated resources, ensuring that there were no
performance fluctuations due to shared hardware or resource
contention. Additionally, the machine was running Ubuntu
22.04 LTS, and all experiments were conducted using PYTHON
v3.10.6.

V. RESULTS

This section presents the results obtained from the exper-
iments conducted in Section IV. For each research question,
we provide detailed insights on the proposed approach and
the corresponding validation method used for the experiments.
In comparing observations, the Kruskal-Wallis test revealed
overall group differences, and post hoc Mann-Whitney U rank
tests confirmed pairwise distinctions, all with p-values < 0.05.
Significance at o = 0.05 level was established. Effect sizes were
computed using the Rank-Biserial Correlation coefficient (r),

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1146

TABLE III
RQ1 RESULTS — AVERAGE RUNTIME IN SECONDS FOR 30 ITERATIONS

Avg. Time (s) Space Requirements

Step Size
Execution Recording Replay SnapI;Jll:;ttl; Size (%‘ig)
FIBONACCIITERATIVE

1 0.223 148.750 227.446 99,935 4.008

10 0.223 14.895 22.661 9,995 4.008

100 0.223 1.720 2.401 1,001 4.010
1,000 0.223 0.391 0.442 101 3.988
10,000 0.223 0.256 0.265 11 3.910

FIBONACCI

1 0.180 60.519 127.933 69,758 3.667

10 0.180 6.280 12.703 6,977 3.667

100 0.180 0.819 1.444 699 3.657
1,000 0.180 0.257 0.313 71 3.597
10,000 0.180 0.197 0.206 8 2.882

MERGESORT

1 0.255 545.916 592.353 99,857 21.221

10 0.255 54.520 56.779 9,987 21.220

100 0.255 5.459 5.429 1,000 21.215
1,000 0.255 0.791 0.762 101 20.836
10,000 0.255 0.305 0.310 11 10.623

MATRIXMULTIPLICATION

1 0.224 327.370 402.173 86,782 14.121

10 0.224 32.667 38.833 8,680 14.118

100 0.224 3.298 3.777 869 14.103
1,000 0.224 0.549 0.571 88 13.851
10,000 0.224 0.268 0.276 10 11.976

SHORTESTPATHFIRST

1 0.265 943.317 808.596 99,620 20.394

10 0.265 94.804 81.469 9,963 20.394

100 0.265 9.647 8.200 998 20.368
1,000 0.265 1.102 0.837 101 20.143
10,000 0.265 0.361 0.342 11 17.955

LANCZOS

1 0.219 594.447 588.258 76,129 14.715

10 0.219 59.865 57.526 7,614 14.714

100 0.219 6.146 5.888 763 14.699
1,000 0.219 0.804 0.762 78 14.449
10,000 0.219 0.281 0.277 9 12.585

yielding an r value of 1, signifying a substantial and statistically
significant difference between the samples’ distributions.

A. RQI — Program Segmentation

Our experiments indicate that the Mona Interpreter (MI)
effectively records and replays accurate results across all step
sizes. To verify that each trace 7; produces the correct output
O; we ran all the traces 7 in sequence and compared the pro-
duced output to the oracle, i.e., the hash of the next trace 7;;1.
Additionally, our results suggest that the runtime for execution,
recording, and replay decreases as the step size increases for all
programs. However, a trade-off exists between trust (low step
size) and performance (high step size). While a step size of one
provides accurate and trustworthy results, it is impractical due
to its longer runtime. Conversely, a higher step size improves
performance but may affect the trustworthiness of the results,
as shown in Table III. Although full trust can only be achieved
with a step size of one, further research and experiments are
required to determine the actual impact on performance and
trust. Notably, the step size also affects space requirements:
the memory needed per snapshot, on average, corresponds to
the memory usage of the program under evaluation until the
subsequent snapshot. In our experiments, the average space

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

requirement per snapshot ranged from 4 to 21 KB as shown
in Table III. However, a decrease in step size leads to a higher
number of snapshots, thereby increasing the total memory de-
mand. This indicates that the step size is directly related to the
performance and space consumption. Further research is nec-
essary to thoroughly assess the balance between performance,
trustworthiness, and memory usage.

Our prototype language was able to reproduce accurate re-
sults for the given benchmark problems, as shown in Table III.
However, some of the benchmark problems exhibited unex-
pected results, as the replay time was higher than the recording
time. This deviation is the result of the large tail recursion pro-
moted by these programs, which caused every replay to rebuild
large proportionally deep evaluation trees. Further research is
necessary to identify potential optimizations for the MI and to
investigate how these optimizations can improve the replay time
of programs with large tail recursion.

RQ1 - In summary: The experiments demonstrated that the
MI prototype is effective in accurately recording and replaying
program executions for all step sizes and benchmark problems.
The trade-off between trust and performance was observed, with
lower step sizes providing higher trust but lower performance,
and higher step sizes offering better performance at the cost of
lower trust. Additionally, the experiments revealed that lower
step sizes result in increased space requirements. This reflects
a direct relationship among step size, performance, and space
requirements, underscoring the intricate balance that must be
managed between these factors.

B. RQ2 — Certification Protocol

The experiments have demonstrated the feasibility of running
the OCCP on a Layer 2 blockchain, specifically POLYGON, as
presented in Table IV.

When comparing the trade-off between step sizes of 100 and
1,000 in the LAZYWORKER scenario, there is an increase in the
number of executed expressions in the latter, and conversely, a
decrease in the required certification time. This is due to the fact
that the increased step size reduces the communication over-
head on the blockchain platform but requires more expressions
for any given trace to be re-executed.

When comparing the results of the LAZYWORKER scenario
experiments, we observe that our approach consistently results
in fewer re-executed expression than the baseline of the respec-
tive scenario. The increase in executed expressions observed in
the LAZYWORKER scenario, compared to the HAPPY scenario,
is due to the need to re-execute traces that were assigned to
malicious workers. This difference arises because malicious
workers cast votes without executing the traces, which requires
additional re-execution of the involved traces to resolve the
resulting conflicts. On average, a malicious worker incurs an
additional overhead of expressions required for executing one
trace, whereas full re-execution would double the executed
expressions. Furthermore, a higher gas cost is associated with
a smaller step size, these costs can be attributed to the higher
communication requirements. However, these costs can be con-
trolled through step size adjustments. Specifically, a larger step

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION 1147
TABLE IV
RQ2 RESULTS — AVERAGE RUNTIME, IN SECONDS, AND NUMBER OF EXECUTED EXPRESSIONS, OVER 30 RUNS
Avg. Cert. Time (s) Gas Costs (Mil.) Exec. Exprs Error Rates
Program Scenario Step Size Step Size Step Size FP/FN
BASELINE 100 1,000 BASELINE 100 1,000 BASELINE 100 1,000 BASELINE 100 1,000

EQUIVALENT . .

FIBONACCI T R 12.716 513.174 73.652 4.202 373.748 39.329 71,360.0 100.0 1,000.0 1.0/0.0 0.0/0.0 0.0/0.0
HAPPY 15.555 514.896 73.579 3.722 476.797 49.829 1,395,140.0 69,757.0 76,732.7 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 10% 15.387 654.382 135.912 3.616 598.401 69.822 1,255,626.0 72,663.667 95,600.3 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 20% 15.116 702.067 174.426 3.515 617.385 79.706 1,116,112.0 74,730.334 128,793.133 0.0/0.1 0.0/0.0 0.0/0.0
LAZYWORKER 30% 14.989 823.23 435.668 7.176 617.69 117.174 1,953,196.0 78,107.0 262,824.9 0.0/0.033 0.0/0.0 0.0/0.0
LAZYWORKER 40% 143 1,057.348 1,274.64 7.07 593.071 244.263 1,674,168.0 85,274.833 659,872.834 0.0/0.567 0.0/0.0 0.0/0.0
MALICIOUSUSER 17.011 515.634 73.639 3.318 471.865 49.089 1,395,140.0 69,757.0 76,732.7 0.0/0.0 0.0/0.0 0.0/0.0

FIBONACCI e 50 205 p . 0o @ -0 RRA . - -

ITERATIVE HAPPY 18.515 729.395 87.593 4.12 682.689 69.866 1,998,680.0 99,934.0 99,934.0 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 10% 16.823 954.152 221.272 3.942 866.128 91.811 3,370,950.334 102,170.667 125,100.667 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 20% 16.403 965.92 202.965 3.968 887.046 105.304 3,277,958.6 90,196.133 154,156.334 0.0/0.567 0.0/0.0 0.0/0.0
LAZYWORKER 30% 15.017 1,066.666 428.06 4.003 814.456 132.508 2,680,154.6 106,184.0 260,056.666 0.0/0.733 0.0/0.0 0.0/0.0
LAZYWORKER 40% 14.742 1,411.262 1,171.964 3.879 857.327 244.888 2,328,114.467 110,517.4 623,560.533 0.0/0.933 0.0/0.0 0.0/0.0
MALICIOUSUSER 19.194 730.487 87.741 3.849 675.636 68.894 4,387,217.134 99,934.0 99,934.0 0.0/0.0 0.0/0.0 0.0/0.0

LANCZOS HAPPY 16.117 581.605 76.26 7.976 521.053 54.467 1,522,560.0 76,128.0 76,128.0 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 10% 16.546 721.855 141.194 7.723 640.154 74.879 1,370,304.0 78,514.667 115,495.466 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 20% 16.674 779.922 176.752 7.804 639.503 83.339 1,218,048.0 80,578.0 129,516.0 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 30% 15.078 938.292 389.54 15.666 622.745 109.196 2,131,584.0 84,032.266 222,675.734 0.0/0.166 0.0/0.0 0.0/0.0
LAZYWORKER 40% 15.064 1,180.06 1,144.937 15.516 649.454 220.22 1,827,072.0 92,321.333 563,151.2 0.0/0.266 0.0/0.0 0.0/0.0
MALICIOUSUSER 19.31 579.247 78.147 7.442 515.845 53.64 1,522,560.0 76,128.0 76,128.0 0.0/0.0 0.0/0.0 0.0/0.0

ﬁﬁz‘f_l‘l’,‘u camioy HAPPY 15.807 651.147 90.916 7.037 593.492 61.552 1,735,620.0 86,781.0 86,781.0 0.0/0.0 0000 0.0/00
LAZYWORKER 10% 16.087 779.441 142.687 6.77 804.691 79.721 1,562,058.0 88,994.5 109,533.067 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 20% 16.49 887.788 214.627 6.872 678.446 94.805 1,388,496.0 90,607.667 148,134.033 0.0/0.033 0.0/0.0 0.0/0.0
LAZYWORKER 30% 15.116 1,084.062 433.089 13.745 723.366 123.869 2,429,868.0 98,074.333 255,178.533 0.0/0.05 0.0/0.0 0.0/0.0
LAZYWORKER 40% 14.972 1,210.444 2,175.75 13.609 724.327 330.615 2,082,744.0 100,784.367 949,897.0 0.0/0.366 0.0/0.0 0.0/0.0
MALICIOUSUSER 19.287 650.831 91.947 5.088 587.359 60.662 1,735,620.0 86,781.0 86,781.0 0.0/0.0 0.0/0.0 0.0/0.0

MERGESORT HAPPY 16.38 736.882 96.897 6.532 682.675 70.084 1,997,120.0 99,856.0 99,856.0 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 10% 17.667 962.512 175.203 6.361 980.638 92.182 1,797,408.0 102,279.333 123,156.0 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 20% 16.524 964.519 195.528 6.378 818.057 106.097 1,597,696.0 103,719.333 155,817.867 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 30% 15.305 1,122.631 453.675 12.794 821.501 138.285 2,795,968.0 105,909.333 276,141.066 0.0/0.1 0.0/0.0 0.0/0.0
LAZYWORKER 40% 15.022 1,552.131 780.445 12.632 841.294 193.359 2,396,544.0 117,894.534 441,306.933 0.0/0.316 0.0/0.0 0.0/0.0
MALICIOUSUSER 19.664 739.686 92.292 5.406 675.584 69.112 2,020,419.734 99,856.0 99,856.0 0.0/0.0 0.0/0.0 0.0/0.0

SHORTEST 5 o 5 N 2 999 - 99.6 90.616

PATHFIRST HAPPY 18.028 762.622 97.907 8.252 681.703 70.002 1,992,380.0 99,619.0 99,619.0 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 10% 17.472 894.811 168.344 8.182 816.025 90.457 1,793,142.0 101,725.667 119,542.8 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 20% 17.022 953.828 233.937 8.184 830.349 95.614 1,593,904.0 103,682.333 148,934.867 0.0/0.0 0.0/0.0 0.0/0.0
LAZYWORKER 30% 16.436 1,115.191 711.422 16.456 779.423 156.214 2,789,332.0 106,282.333 355,760.266 0.0/0.083 0.0/0.0 0.0/0.0
LAZYWORKER 40% 15.032 1,501.588 1,265.742 16.145 823.51 238.196 2,390,856.0 115,730.4 609,861.733 0.0/0.366 0.0/0.0 0.0/0.0
MALICIOUSUSER 21.084 773.87 99.478 7.071 674.618 69.03 2,042,189.5 99,619.0 99,619.0 0.0/0.0 0.0/0.0 0.0/0.0

size not only improves performance by reducing communica-
tion overhead but also helps mitigate gas consumption. Future
work should therefore focus on finding a trade-off between
smart contract optimization and efficient gas usage.

Our approach reliably handles up to 40% malicious work-
ers, demonstrating its robustness in detecting and addressing
malicious behavior. Unlike the baseline approach, which fails
to detect subtle code modifications unless they affect the final
result, our method consistently identifies such manipulations as
demonstrated by the EQUIVALENTREGISTERSATTACK scenario.
The integration of our protocol’s sequence hash verification and
trace-based certification not only addresses the limitations of
the naive approach but also enables reliable execution certifica-
tion by detecting input and output manipulations as well as code
modifications, resulting in a more robust solution. However,
the increased reliability comes with a trade-off of higher re-
source costs. Notably, when the percentage of malicious work-
ers reaches 40%, the overhead introduced becomes significant.
Despite this, the system remains effective in certifying tasks
even in the presence of additional malicious workers. Further
research is required to gauge the impact of multiple malicious
workers in combination with malicious users (see Section VIII).

When comparing the MALICIOUSUSER results to the HAPPY
results regarding executed expressions, we noticed that the ex-
ecuted expressions were the same, indicating that the number

of executed expressions was not impacted by whether the ex-
ecution was successful or rejected. This lack of difference
was anticipated as traces for a full program are provided
in both scenarios; however, no quorum is reached in the
MALICIOUSUSER scenario. Thus, the workers need to compute
each trace individually as in the HAPPY scenario and finally
reach the conclusion that the execution does not match the
provided H.

We wish to stress that a rejected execution is not necessarily
due to malicious acts, and a false negative has less weight than
a successful certification. To restate, our approach has higher
resilience to false positives than false negatives. Overall, the
results demonstrate that our approach is effective in detecting
and resolving conflicts in a distributed computation setting and
can achieve reasonable performance and scalability on a Layer
2 blockchain.

The average communication time between the workers and
the Smart Contract is 6.353 seconds. When analyzing the
impact of different scenarios and step sizes, we observe that
an increase in the number of traces leads to a correspond-
ing increase in communication overhead. Specifically, in the
HAPPY scenario, the average communication time increases
10-fold when the step size is increased from 100 to 1,000.
For the LAZYWORKER scenarios, the communication overhead
varies due to the additional interactions introduced by conflicts.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1148

The observed increases in communication for LAZYWORKER
of 10%, 20%, 30%, and 40% of malicious workers were 8-
fold, 5-fold, 3-fold, and 2-fold, respectively. In the baseline
approach, the average number of communications is fixed at
20 for HAPPY scenario, while the average communication time
between workers and the Smart Contract remains consistent
with our proposed approach. However, the average overhead
introduced by our method, compared to the baseline, is 4-fold
for a step size of 1,000 and nearly 44-fold for a step size of 100.
This overhead can be reduced by adjusting the step size, which
will result in fewer communication events.

RQ2 - In summary: Our experiments have demonstrated that
the proposed OCCP is a feasible approach where the overhead
of time and resources are dependent on the chosen step size, as
observed in RQ1. However, in this initial research, we observe
performance degradation due to implementation challenges, such
as communication overhead from blockchain interactions, which
need to be optimized in future work. In addition, our approach
can handle all proposed malicious scenarios and reliably certify
tasks or reject them.

C. RQ3 — Informed Step Size

The results show that the informed step size, compared to
the non-informed variations (see RQ2), reduces the required
certification time by up to 26-fold for the step size of 100 and
10-fold for 1,000. Similarly, gas costs are reduced by up to 44-
fold for a step size of 100 and 6-fold for 1,000. As expected,
the number of executed expressions for the multiplier 1 remains
approximately the same as reported in RQ?2.

Compared to the baseline, our approach consistently demon-
strated performance gains for benchmarks scaled with a mul-
tiplier of 1,000. In this configuration, our method required up
to 43-fold less time and 12-fold less gas consumption. How-
ever, these performance improvements only became apparent
at or beyond the threshold multiplier of 1,000, indicating that
performance gains outweigh communication overheads as the
program size increases. For smaller problem sizes (multipliers
below 1,000), our informed step size approach incurred higher
time and gas costs during the certification process, similar to the
trends observed in RQ2. Nonetheless, benchmarks scaled with
a multiplier of 100 already exhibited notable time savings of up
to 9-fold, though gas costs remained higher, with up to a 3-fold
increase compared to the baseline. Despite these increases
for smaller multipliers, our approach consistently reduced the
need for re-execution of expressions across all experimental
configurations.

We observe that in the baseline, the required execution time
decreases as the number of malicious workers increases. This
behavior is consistent with the findings in RQ2, where mali-
cious workers avoid executing the intended program, effectively
skipping computational work. The reduction in execution time
is more pronounced for larger program sizes and higher pro-
portions of malicious workers, as the skipped workload scales
with these factors.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

RQ3 - In summary: Our experiments demonstrate that adopting
an informed step size improves time requirements and gas
costs for longer-running benchmark problems, particularly when
scaled by a factor of 1,000. Notably, while the performance gains
become most evident after reaching a scale factor of 1,000, some
improvements are already observed for time at smaller scales,
such as 100. However, at this lower threshold, reductions in gas
costs remain negligible compared to the baseline. Expectedly,
the informed step size consistently reduces the number of re-
executed expressions across all tested scales (similar to RQ2).
Compared to the non-informed variation, time requirements are
reduced by up to 26-fold for a step size of 100 and 10-fold for
1,000. Similarly, gas costs are reduced by up to 44-fold for a
step size of 100 and 6-fold for 1,000.

VI. RELATED WORK

In this section, we provide a brief overview of prior works on
verification and computational integrity approaches that relate
to our proposed approach.

A. Hardware-Based Verification

Hardware-based verification can offer certain guarantees re-
garding the authenticity and integrity of an application. How-
ever, this approach relies on specialized hardware, such as
Intel® Software Guard Extensions (Intel® SGX) [11], Se-
cure Encrypted Virtualization (SEV) [13], or ARM TrustZone
(TrustZone) [12], which can be costly and not always available.
Additionally, there is still the possibility that malicious actors
may alter the results after execution, as highlighted in the chal-
lenges of Intel® SGX [15].

B. Constraint Solvers

They translate code into constraints, which can only be
solved if all the arguments provide a solution to the equation
system of constraints. Systems such as PIPERINE [35], PANTRY
[19], and SPICE [36] provide such functionality. However, all
the aforementioned systems are limited by one or more of the
following characteristics: 1) they require changes to the code
to work, 2) have a fixed bound for loops, 3) static size for data
structures (e.g., fixed tree depth), and 4) high latency due to
waits between batches of verifications. While these limitations
may not be problematic for smaller applications or toy exam-
ples, they can hinder the performance and scalability of larger
applications with considerable dataset sizes. Additionally, the
verification process would require either a deep understanding
of the code’s internals or blind trust in a third party that provides
the constraints.

C. Software-Based Verification

Sasson et al. introduced ZK-SNARKS, a software-based ver-
ification approach for non-interactive zero-knowledge proofs.
The approach is based on arithmetic circuits and assertions
that do not require a re-execution to verify [28]. Later, Sas-
son et al. improved their previous approach and introduced
ZK-STARKS that introduce transparency for zero-knowledge

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

1149

TABLE V
RQ3 RESULTS — IMPACT COMPARISON OF LONG-RUNNING EXECUTIONS. AVERAGE RUNTIME, IN SECONDS,
AND NUMBER OF EXECUTED EXPRESSIONS, OVER 3 RUNS

Avg. Cert. Time (s)

Gas Costs (Mil.) Exec. Exprs (Mil.)

Program Scenario Approach Multiplier Multiplier Multiplier
1 10 100 1000 1 10 100 1000 1 10 100 1000
— NAIVE 14941 28159 161.941 1,476.378 3.869 4416 7.099 32.552 13.951 139.51 1,395.1
occp 27163 30.189 48.118 238.078 15.536 15.591 15.529 15.571 0.698 6.976 69.755
NAIVE 1519 33202 152.703 8,222.387 3.7 5.136 9.596 224.273 14.021 139.51 2,790.2
LAZYWORKER 10% o 45712 109.518 100.672 412286 24.951 21.163 21.554 1.099 11.242 122,188
NAIVE 17.744 737 614431 5,955.659 3.634 4572 37.236 11.161 111,608 1,116.08
FrBoNACCH LAZYWORKER 20% o cp 80.157 172494 112192 732.102 31.18 25.077 32.474 1.431 17.264 248,444
! LazyWorke 305 NAIVE 17563 65545 540.228 5,212.203 3.557 5.035 35.833 9.766 97.657 976.57
ocer 90.191 151.625 202538 1,420.791 34.475 30.153 55.965 1.821 27.228 473.172
NAIVE 57.552 463.555 4,462.853 3.511 4.054 37.569 8.371 83.706 837.06
LAZYWORKER 40%) 271201 388.817 1,870.986 45.516 54.254 68.729 1.466 53.444 600.939
NAIVE 54312 416.188 4,019.539 3.274 5.165 36.878 13.951 139.51 1,395.1
MaLICIOUSUSER ocep 30480 48.497 241.328 15.111 15.122 15.101 0.698 6.976 69.755
— NAIVE 63167 505.242 4,680.364 5.708 19.124 19.986 199.86 1,998.6
occp 30.6 53.049 283.662 15.541 15.58 0.999 9.993 99.93
NAIVE 33.003 181.573 10,026.82 5.459 69.538 19.953 199.86 1,998.6
LAZYWORKER 10% oy 99.833 102112 505.118 20.945 . 22.177 1.581 16.838 195.03
NAIVE 86.409 755.664 7,395.015 84 18.709 15.989 150.888 1,508.88
FIBONACCITERATIVE LAZYWORKER 20% oy 105.665 125739 807.301 . 31.717 1.99 24.116 330.602
! LazyWorker 305 NAIVE 77559 658.887 6,452.206 18.103 13.99 139.902 1,399.02
occe 165477 192476 1,377.47 34.569 48.167 3.018 36.908 550.281
NAIVE 70205 568.222 5,550.851 6.936 19.013 11.992 119916 1,199.16
LAZYWORKER 40% 0 cp 202566 4101 3.542.724 63.349 101.065 1.995 81.143 1373371
. NAIVE 63.075 505.963 4,681.979 ; 19.137 19.986 199.86 1,998.6
MALICIOUSUSER occp 27.219 30565 54.117 289.367 15.073 15.112 0.999 .993 99.93
— NAIVE 15225 20.832 168.942 1,494.42 8.605 20.733 15.225 152,244 1,522.44
/ occe 28103 30.248 50.731 242.947 15517 15.545 0.761 7.612 76.122
NAIVE 15166 33.268 159.649 8,633.519 9.853 78.675 15.275 152,244 1,522.44
LAZYWORKER 10% o) 56.341 94.173 104.051 445.491 20.861 22.128 1.166 13.106 146.789
NAIVE 19748 77.709 642.356 6,245.005 9.132 23.916 12.18 121795 1,217.952
LANCZOS LAZYWORKER 20% o 78167 140.013 126.56 610.978 25.112 29.332 1.6 17.66 228.747
LazyWorker 305 NAIVE 17566 69571 561.562 5,456.849 9.768 22.748 10.657 106571 1,065.708
occp 12018 189.148 208.381 1,985.648 37.461 70.365 2914 31.489 687.255
NAIVE 17557 61.533 488.208 4,680.881 9.186 9.135 91.346 913.464
LAZYWORKER 40% 0 cp 174428 308.299 496.166 2,402.201 51.218 4518 74752
I NAIVE 57.304 43547 4,041.03 9.786 3 15.225 152.244
MALICIOUSUSER occp 3014 50.095 249.054 15.047 15.061 15.078 0.761 7.612
Happy NAIVE 31.371 181.337 9,360.574 7.959 11.731 47.969 17.331 173.285 1,732.823
ocer 20.997 52.507 268584 15.568 15.531 15.623 0.867 5.664 86.641
NAIVE 5. 33.066 168.055 8,552.99 9.055 16.086 176.006 17.331 173.285 1,732.823
LAZYWORKER 10% o) 138.944 121.621 108.981 466.942 20.746 22.115 21.373 1.324 14.209 158.409
NAIVE 1911 81.091 689.727 6,714.39 13.649 13.865 138.628 1,386.258
MATRIXMULTIPLICATION LAZYWORKER 20% yc.cp 76.496 99.202 137.277 786.072 28.136 1.922 23.206 287.504
LazyWorkim 30% NAIVE 604.229 5,866.896 12.94 12.132 121,299 1,212.976
“ occe 186.412 32.115 540.063
:) NAIVE 65.538 520.883 103971 1,039.694
LAZYWORKER 40% c.cp 21502 383.093 7985 1.224.239
. - NAIVE 19444 61271 469.616 173.285 1,732.823
MAUICIOUSUSER —— ccp 28779 30245 52138 15.095 15.065 8.664 86.641
Happy NAIVE 15.109 210528 1,870.644 7.548 12781 199417 1,994.143
ocer 29.027 56.457 308.65 15.571 15.583 9.971 99.707
NAIVE 15.188 195.587 10,848.192 8.434 17.893 199417 1,994.143
LAZYWORKER 10% o) 89.576 110.814 543.501 22.548 22.441 17.665 188.28
NAIVE 20.431 797.028 7,731.012 7.999 14.752 159.534 1,595.314
MERGESORT LAZYWORKER 20% c.cp 65.077 164.705 762.991 27.73 28.746 2.25¢ 27.852 286.492
LazyWorker 30% NAIVE 19.59 700215 6,756.859 8.507 14.094 13.961 139592 1,395.9
0% occr 96.028 235.559 1,496.706 37.188 37.97 3.743 2 535.427
) NAIVE 17.566 605.565 5,804.2 8.897 14.835 11.967 1,196.486
LAZYWORKER 40% 167115 210.084 334.580 2,857.447 45.045 51.549 5.023 50.526 1,007.042
MaLCloUsUser NAVE 1916 67.599 54821 5050.571 7.733 13.606 19.944 199.417 1,994.143
occp 28.904 32.997 56.712 312.064 15.1 15.119 15.13 0.997 9.971 99.707
Happy NAIVE 1580 33201 200.33 1,764.919 9.002 10.21 21.002 19.923 199.232 1,992.32
occp 30448 32437 54457 286.605 15.596 15.582 15.596 9.962 99.616
NAIVE 16.628 33204 188.464 10,390.837 10.076 88.713 199.232 1,992.32
LAZYWORKER 10% .cp 92.283 117.923 1 510.942 22.287 22.195 17.117
:) NAIVE 21119 90.42 7,42 9.586 24.066 159.386
SHORTESTPATHEIRST LAZYWORKER 20% ccp 55780 92.639 714.371 25.818 28.804 24.821
LazyWorker 30% NAIVE 1958 81571 6,510.8 10.141 23.06 139.462
/ 0% occr 92422 118.021 1,719 36.16 36.906 55.015 140.012
LAzyWorkeR 40% NAIVE 19555 71534 5,576.2 10.689 11.882 24.199 119.530 1,195.392
o ocer 142,516 221.83 4,516 47.013 61.767 119.669 76.688 1,707.751
MALCousUser NAIVE 19.108 65.873 4,762.235 9.396 10.761 22.846 199.232 1,992.32
! i occp 30.438 32.477 293.116 15.125 15.113 15.127 9.962 99.616

systems. The approach uses arithmetic circuits to generate
proofs [5]. Bitansky et al. published SNARGS (Succinct Non-
Interactive Arguments) that improve the required complexity
for verifying based on cryptographic transformations, therefore,
reducing the verification time for software-based verification
systems [37].

However, all of these approaches rely on the ability to com-
pile code to circuits to verify that a computation was cor-
rect, where a “prover” has to execute and generate a transcript
(proof), which is then verified by the “verifier” [2]. However,
most such approaches require that computations are bounded.
In other words, circuits have a fixed size. Consequently, most
software-based verification systems [38] can not handle input-
dependent loops, recursions, and dynamic-sized data structures

(e.g., depth for trees). Therefore, such systems are not well
suited for larger (real-world) applications, as seen in most in-
dustrial applications. To reiterate, a deep understanding of the
internals of the code is a prerequisite for approaches based on
writing assertions to verify that an execution was executed cor-
rectly. Additionally, writing non-trivial assertions requires time
and effort. Therefore, such systems can not easily be applied to
our use cases.

D. On-Chain Verification

Teutsch and ReitwieBner proposed TRUEBIT, a scalable ver-
ification solution for blockchains that is based on an elaborate
incentive system. In this approach, a solver executes the full

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

1150

program, and in case of a dispute, is challenged and must play
a verification game to prove that the solution was correct [4].
However, as discussed earlier, re-executing the full program
significantly reduces the usability of such a system due to the
increase in computation and time requirements.

VII. CONCLUSION AND FUTURE WORK

We have demonstrated the feasibility of our proposed Mona
Interpreter (MI) and On-Chain Certification Protocol (OCCP)
for certifying program executions with the help of a layer
2 blockchain. Our experimental results indicate that our MI
prototype can accurately reproduce correct results for every
step size. However, a trade-off between trust and performance
exists, which requires further investigation to determine an ideal
balance between the two. On average the step size increase
from 100 to 1,000 speeds up the certification process by a
factor of 7.371 while only slightly increasing the number of
executed expressions in certain scenarios. In-depth experiments
and optimizations are needed to mitigate the impact of a lower
step size.

Additionally, our proposed OCCP was able to certify cor-
rect executions, while outperforming the baseline, which re-
executes the full program multiple times, with fewer executed
expressions in all proposed scenarios. Furthermore, our pro-
posed approach allows for the detection of incorrect or mali-
cious actions with similar effort as certifying a correct one.

In the future, we plan to investigate the adaptation of the
mechanisms devised for MI to other programming languages,
providing them with the feature of segmentation and replay.
While this paper presents evidence on the feasibility of the
approach, a large-scale case study is required to thoroughly
examine how well this approach scales to real-world scenarios,
considering both the performance impact and the practical chal-
lenges of deploying it across diverse, complex environments.

For OCCP, we aim to explore the use of different blockchains
and develop an incentive mechanism alongside a reward system
that better defines the roles and compensations for participants
solving the proposed problem. Specifically, potential incentive
mechanisms could include a paid service model, funded either
by universities and journals or by users who wish to verify their
execution, paying into a smart contract. This smart contract
would then fairly distribute monetary remuneration to workers
based on their contributions. Additionally, to further ensure
reliable and non-malicious participation, we propose a dual-
layer approach: 1) integrating a mechanism to detect malicious
workers, thereby encouraging trustworthy behavior, and 2) re-
quiring workers to deposit a small stake into the smart con-
tract. Workers would forfeit this deposit in cases of malicious
behavior, but non-malicious participants would receive it back,
providing both a deterrent against misconduct and an additional
incentive to act responsibly.

Future work can explore extending our approach to multi-
threading aspects. Adding a sequentially numbered annotation
layer, using the seqld strategy, to track the evaluation progress
of threads within its assigned code derivation. This would cap-
ture a memory snapshot showing all active threads at a given

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

time. Moreover, future work could focus on enhancing the per-
formance of the MI by exploring alternative Intermediate Rep-
resentations (IRs) beyond the current AST approach, aiming
to achieve faster verification times and support more advanced
optimizations. The proposed certification protocol can succeed
if the likelihood of reaching a snapshot with output altered by
a concurrent side effect remains statistically probable within
expected retries. The annotation layer would help manage mul-
tiple threads, allowing computation to continue from where
each thread left off. If concurrency doesn’t affect the snapshot’s
memory state, the snapshot is verified. Otherwise, the same
concurrency conditions must be reproducible through a quo-
rum. Further analysis is needed to define an acceptable quorum
and the probability of reaching the same memory state. Future
research can also focus on a concurrency-aware snapshotting
strategy to limit side effects and maintain consistent outputs.

In order to address non-determinism, we plan to explore the
feasibility of using a sampling mechanism for random genera-
tors until a confidence threshold is reached. This would intro-
duce an element of uncertainty, making it crucial to carefully
analyze the impact on system behavior and overall reliability.

Additionally, future work can focus on implementing an
identity mechanism to prevent address spoofing and flooding by
malicious workers by employing Decentralized Identity (DID)
frameworks, each worker would possess an identity anchored
in a public blockchain, where cryptographic signatures ensure
authenticity without relying on a centralized authority. This
would enable consistent worker recognition, prevent malicious
actors from forging multiple identities. Additionally, verifiable
credentials could be used to certify a worker’s qualifications and
past performance while preserving privacy, further mitigating
risks of impersonation or malicious behavior. Future iterations
of our system could implement these mechanisms as a service
to strengthen security.

Lastly, a non-local adaptation of IPFS should be analyzed
and evaluated in future iterations as well as the use of consistent
hashing to improve performance of our approach.

In conclusion, our proposed MI and OCCP hold promise
in enhancing the trustworthiness and security of program ex-
ecutions through segmentation and certification, respectively.
It encourages further investigation and development in this area
by the research community.

VIII. LIMITATIONS AND THREATS TO VALIDITY
A. Malicious Worker Scenarios

Our experiments specifically evaluate the scenario where
malicious workers intentionally provides incorrect results.
In practice, malicious actors may attempt to interfere with the
certification process in other ways, such as by withholding
results or intentionally producing conflicting outputs. Conse-
quently, the robustness of our protocol against other types of
malicious interference remains uncertain.

B. Collusion Between Malicious Users and Workers

We did not explore scenarios involving collusion between
malicious workers and users. If more than 50% of the workers

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

WOLF et al.: TRUSTWORTHY DISTRIBUTED CERTIFICATION OF PROGRAM EXECUTION

are malicious, they could potentially disrupt the certification
process, leading to failure of the protocol and the underlying
blockchain. This requires deeper analysis, which is out of scope
for the current work.

C. Local Blockchain Evaluation

The use of a local blockchain platform for our experiments
may not fully represent the performance of our protocol in non-
local or private blockchain environments. Additionally, the use
of a local Amazon S3 instance for trace data storage might
impact protocol performance, potentially affecting the perfor-
mance of the protocol.

D. Majority Voting Mechanisms

Our protocol relies on majority voting for certification. While
it is designed to detect discrepancies between executions, it
assumes that the majority of participants are honest. Collusion
among malicious workers and malicious users could undermine
the voting mechanism’s effectiveness. However, this is an in-
trinsic limitation of majority voting mechanisms.

E. Generalizability to Other Languages and Paradigms

Additionally, we evaluated the feasibility of our proposed
programming language on specific use cases (see Section IV-A).
Further work is required to extend our work to other program-
ming languages and evaluate real-world applications.

FE. Task Distribution Fairness and Integrity

Our current implementation does not address fairness or in-
tegrity in task distribution to workers. We mitigate this partially
by tracking tasks and worker identification to prevent disputes
from being assigned to the same worker. However, more robust
mechanisms need to be developed to enhance fairness.

G. Lack of Identity Mechanisms

Although our implementation includes unique identifiers for
workers, it currently lacks a robust identity verification mech-
anism. To address this limitation, future work could integrate
DID frameworks, as discussed in prior studies [39], [40], [41],
[42]. Specifically, platforms like Hyperledger Indy [43] or uPort
[44] could provide a foundation for decentralized and crypto-
graphically verifiable identities. By using DID, workers would
be associated with cryptographically secure and verifiable iden-
tities, ensuring consistent worker recognition and preventing
malicious actors from forging multiple identities.

H. Smart Contract Optimization

We also acknowledge that our implementation of the smart
contract may not be optimal, thus leading to higher gas con-
sumption. However, this requires further research into the op-
timization of smart contracts and is out of scope for this paper.

1151

1. False Positives vs. False Negatives

Finally, it is worth noting that our protocol is designed to
be more resilient to false positives (i.e., falsely certifying a
task as correct) than false negatives (i.e., failing to certify a
correct task). As a result, the protocol may require tasks to be
re-executed if they fail to produce a certificate, even if they are
correct. This may lead to additional computational overhead
and delay in some scenarios.

ACKNOWLEDGMENT

We sincerely thank Dr. Pooja Rani for her invaluable guid-
ance and efforts in helping us revise and improve our paper.

REFERENCES

[1] C. Sénchez et al., “A survey of challenges for runtime verification from
advanced application domains (beyond software),” Formal Methods Syst.
Des., vol. 54, pp. 279-335, 2019.

[2] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them,” Commun. ACM, vol. 58, no. 2, pp. 74-84, Jan. 2015.

[3] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Proc. IEEE Symp. Secur. Privacy
(SP), 2013, pp. 238-252.

[4] J. Teutsch and C. ReitwieBner, A Scalable Verification Solution for
Blockchains, 2023, pp. 377-424. [Online]. Available: https://www.
worldscientific.com/doi/abs/10.1142/9789811278631_0015

[5] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,” Cryptol.
ePrint Arch., vol. 2018, p. 46, 2018.

[6] A. L. Beam, A. K. Manrai, and M. Ghassemi, “Challenges to the
reproducibility of machine learning models in health care,” JAMA,
vol. 323, no. 4, pp. 305-306, Jan. 2020.

[7]1 E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy con-
siderations for deep learning in NLP” in Proc. 57th Annu. Meeting
Assoc. Comput. Linguist., A. Korhonen, D. Traum, and L. Marquez, Eds.
Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 3645-3650. [Online]. Available: https://aclanthology.org/P19-1355

[8] R. A. Zwaan, A. Etz, R. E. Lucas, and M. B. Donnellan, “Making
replication mainstream,” Behav. Brain Sciences, vol. 41, p. €120, 2018.

[9] J. Vitek and T. Kalibera, “Repeatability, reproducibility, and rigor in
systems research,” in ACM Int. Conf. Embedded Softw. (EMSOFT),
Oct. 2011, pp. 33-38.

[10] D. Srinivasan and R. Gopalaswamy, Software Testing: Principles and
Practices. Pearson Education India, 2007.

[11] V. Costan and S. Devadas, “Intel SGX Explained,” in Int. Conf. Financial

Cryptography Data Secur. (FC), 2016, pp. 17-36.

S. Pinto and N. Santos, “Demystifying ARM TrustZone: A Comprehen-

sive Survey,” ACM Comput. Surveys, vol. 51, no. 6, Jan. 2019.

[13] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,” Tech.
Rep., 2016.

[14] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environ-

ment: What it is, and what it is not,” IEEE Trustcom/BigDataSE/ISPA,

vol. 1, 2015, pp. 57-64.

S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnerabilities of SGX

and countermeasures: A survey,” ACM Comput. Surveys, vol. 54, no. 6,

Jul. 2021.

[16] M. Morbitzer, S. Proskurin, M. Radev, M. Dorthuber, and E. Q. Salas,
“SEVerity: Code injection attacks against encrypted virtual machines,”
in IEEE Secur. Privacy Workshops (SPW), 2021, pp. 444-455.

[17] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution en-
vironments: Properties, applications, and challenges,” IEEE Se-
cur. Privacy, vol. 18, no. 2, pp. 56-60, Mar. 2020, IEEE Se-
cur. Privacy. [Online]. Available: https://ieeexplore.ieee.org/document/
9041685/?arnumber=9041685

[18] T. Vogel, S. Druskat, M. Scheidgen, C. Draxl, and L. Grunske, “Chal-
lenges for verifying and validating scientific software in computational
materials science,” in IEEE/ACM International Workshop on Software
Engineering for Science (SE4Science), 2019, pp. 25-32.

[19] B. Braun, A. Feldman, Z. Ren, S. Setty, A. Blumberg, and M. Walfish,
“Verifying computations with state,” in ACM Symp. Operating Syst.
Princ. (SOSP), 2013, pp. 341-357.

[12]

[15]

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

https://www.worldscientific.com/doi/abs/10.1142/9789811278631_0015
https://www.worldscientific.com/doi/abs/10.1142/9789811278631_0015
https://aclanthology.org/P19-1355
https://ieeexplore.ieee.org/document/9041685/?arnumber=9041685
https://ieeexplore.ieee.org/document/9041685/?arnumber=9041685

1152

[20] K. Toyoda, P. T. Mathiopoulos, I. Sasase, and T. Ohtsuki, “A novel

blockchain-based product ownership management system (POMS) for

“Blockchain-based identity management systems: A review,” J. Netw.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Comput. Appl., vol. 166, 2020, Art. no. 102731. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804520302058

anti-counterfeits in the post supply chain,” IEEE Access, vol. 5, [42] R. Soltani, U. T. Nguyen, and A. An, “A survey of self-sovereign identity
pp. 17465-17477, 2017. ecosystem,” Secur. Communication Networks, vol. 2021, no. 1, 2021,
[21] H. R. Hasan and K. Salah, “Combating deepfake videos using Art. no. 8873429. [Online]. Available: https://onlinelibrary.wiley.com/
blockchain and smart contracts,” IEEE Access, vol. 7, pp. 41596-41606, doi/abs/10.1155/2021/8873429
2019. [43] Hyperledger, “Hyperledger indy: Identity for all.” (2024). Accessed:
[22] A. Wolf, M. E. Palma, P. Salza, and H. C. Gall. Replication Nov. 24, 2024. [Online]. Available: https://hyperledger.org/projects/indy
Package. 2023. [Online]. Available: https://github.com/Lochindaal/ [44] D. C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena,
occpReplicationPackage/ “UPORT: A platform for self-sovereign identity,” 2016. [Online]. Avail-
[23] M. E. Palma, A. Wolf, P. Salza, and H. C. Gall. Mona. 2023. [Online]. able: https://whitepaper.uport.me/uPort_whitepaper DRAFT20170221.
Available: https://github.com/MEPalma/Mona/ pdf
[24] E. Mossel, J. Neeman, and O. Tamuz, “Majority dynamics and aggre-
gation of information in social networks,” Auton. Agents Multi-Agent Alex Wolf received the master’s degree in software
Syst., vol. 28, pp. 408-429, 2014. S > .
e L . . . ’ systems from the University of Ziirich, in 2022.
[25] P. Chen and S. Redner, “Majority rule dynamics in finite dimensions, : .
. . He is currently working toward the Ph.D. degree
Phys. Rev. E Statist., Nonlinear, Soft Matter Phys., vol. 71, no. 3, 2005, . R .
with the Software Evolution and Architecture Lab
Aut. no. 036101. . (s.e.a.l.), University of Zurich, Switzerland. His
[26] A. Mukhopadhyay, R. R. Mazumdar, and R. Roy, “Voter and majority S) L . B
. . . - . research focuses on advancing machine learning,
dynamics with biased and stubborn agents,” J. Statist. Phys., vol. 181, . . X .
. K . . software architecture, and engineering. Prior to
pp. 1239-1265, 2020. [Online]. Available: https://api.semanticscholar. L . . . R
beginning his P.h.D. studies, he gained industry
org/CorpusID:214713627
s . . experience through various software engineering
[27] J. M. Buchanan, “Simple majority voting, game theory, and resource g L .
» " . roles, providing a strong foundation in practical, and
use,” Can. J. Econ. Political Sci., vol. 27, no. 3, pp. 337-348, 1961. . ¢ X N .
. b « . technical problem-solving. His research interests lie
[28] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct Non-
. . o at the intersection of machine learning and software engineering, with a
Interactive Zero Knowledge for a Von Neumann Architecture,” in Proc. articular focus on practical applications and the integration of blockchain
USENIX Secur. Symp. (USENIX Secur.), 2014, pp. 781-796. fechnology. For morg informati%l;l see wolf@iﬁ.uzh.ch.g
[29] 1. Khaburzaniya, K. Chalkias, K. Lewi, and H. Malvai, “Aggregating ’
and thresholdizing hash-based signatures using STARKS,” in ACM Asia
Conf. Comput. Commun. Secur. (ASIACCS), 2021. Marco Edoardo Palma is currently working toward
[30] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial the Ph.D. degree with the Software Evolution and
delegation and its applications to zero knowledge proof,” in IEEE Symp. Architecture Lab (s.e.a.l.), University of Zurich,
Secur. Privacy (SP), 2019, pp. 859-876. Switzerland, and the First-Class Honours degree in
[31] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. X. Song, “Libra: computer science with artificial intelligence from
Succinct zero-knowledge proofs with optimal prover computation,” in the University of Southampton, U.K., in 2021. His
Annu. Int. Cryptol. Conf. (CRYPTO), 2019, pp. 733-764. research explores the development of artificial in-
[32] R. S. Wahby, L. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly- telligence tools and strategies to enhance software
efficient zZkSNARKs without trusted setup,” in IEEE Symp. Secur. engineering processes and tools. Currently, his work
Privacy (SP), 2018, pp. 926-943. centres on the deep abstraction strategy, which auto-
[33] K. Turkowski, “Filters for common resampling tasks,” Graph. Gems, matically compiles algorithms with high space and
vol. 94, pp. 147-165, 1990. time complexity into efficient statistical models. For more information, see
[34] G. Wood et al., “Ethereum: A secure decentralised generalised transac- ~ marcoepalma@ifi.uzh.ch.
tion ledger,” Ethereum project yellow paper, 2017.
(351 J. Ll_ee, K(i leltm_’ an’(’l S £ V. S;agg};“?epllc:}ted Sta;f Tnachmg,; w12tg(2>1(1)t Pasquale Salza received the Ph.D. degree in com-
]r)epp 1lclaée | ;:ecunon, mn froc. ymp. Secur. Privacy (SP), ’ puter science from the University of Salerno, Italy.
) o @ . He is a Senior Research Associate with the Software
[36] S. T. V. Sett.y » 8. fG' Angel, T. (}uptq, and Jl; Le?, d Pr,?\fm%) the Evolution and Architecture Lab (s.e.a.l.), University
correct execution of concurrent services in zero-knowledge.” in 2r?c. of Zurich, Switzerland. His research interests in-
IL)/F;S'E;]\;IgXéS‘ggnp - Oper. Syst. Des. Implementation (USENIX OSDI), 2-18, clude software engineering, machine learning, cloud
i . . w . computing, and evolutionary computation. For more
[37] N. B_1tansky,. A. Chiesa, Y. Isk_lal, R Ost_rovsky, _and 0. Panfth, Succinct inforpmatign, see salza@ iﬁ?;zh. chl.)
non-interactive arguments via linear interactive proofs,” J. Cryptol.,
vol. 35, no. 3, p. 15, Jul. 2022.
[38] A. Zeiselmair, B. Steinkopf, U. Gallersdorfer, A. Bogensperger, and
F. Matthes, “Analysis and application of verifiable computation tech-
niques in blockchain systems for the energy sector,” Front. Blockchain, Harald C. Gall (Member, IEEE) is a Profes-
vol. 4, pp. 156-167, 2021. sor of software engineering and Director of the
[39] R. Soltani, U. T. Nguyen, and A. An, “A new approach to client Software Evolution and Architecture Lab (s.c.a.l.),
onboarding using self-sovereign identity and distributed ledger,” in Department of Informatics, University of Zurich,
Proc. IEEE Int. Conf. Internet Things (iThings) IEEE Green Comput. Switzerland. He held Visiting Positions with Mi-
Commun. (GreenCom) IEEE Cyber, Physical Social Comput. (CPSCom) crosoft Research, USA, and University of Wash-
IEEE Smart Data (SmartData), 2018, pp. 134-156. ington, Seattle, USA. His research interests include
[40] M. A. Bouras, Q. Lu, E. Zhang, Y. Wan, T. Zhang, and H. Ning, software evolution, software architecture, software
“Distributed ledger technology for ehealth identity privacy: State of quality, and green software engineering. He has
the art and future perspective,” Sensors, vol. 20, no. 2, 2020. [Online]. worked on developing new ways in which data
Available: https://www.mdpi.com/1424-8220/20/2/483 mining of software repositories and machine learn-
[41] Y. Liu, D. He, M. S. Obaidat, N. Kumar, M. K. Khan, and K.-K. R. Choo, ing can contribute to a better understanding and improvement of software

development. For more information, see gall@ifi.uzh.ch.

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on August 22,2025 at 13:21:02 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Lochindaal/occpReplicationPackage/
https://github.com/Lochindaal/occpReplicationPackage/
https://github.com/MEPalma/Mona/
https://api.semanticscholar.org/CorpusID:214713627
https://api.semanticscholar.org/CorpusID:214713627
https://www.mdpi.com/1424-8220/20/2/483
https://www.sciencedirect.com/science/article/pii/S1084804520302058
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/8873429
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/8873429
https://hyperledger.org/projects/indy
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
mailto:wolf@ifi.uzh.ch
mailto:marcoepalma@ifi.uzh.ch
mailto:salza@ifi.uzh.ch
mailto:gall@ifi.uzh.ch

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

